
An Efficient Proximity Probing Algorithm for Metrology

Fatemeh Panahi1, Aviv Adler2, A. Frank van der Stappen3 and Ken Goldberg4

Abstract— Metrology, the theoretical and practical study of
measurement, has applications in automated manufacturing,
inspection, robotics, surveying, and healthcare. An important
problem within metrology is how to interactively use a measur-
ing device, or probe, to determine some geometric property of
an unknown object; this problem is known as geometric probing.
In this paper, we study a type of proximity probe which, given
a point, returns the distance to the boundary of the object in
question. We consider the case where the object is a convex
polygon P in the plane, and the goal of the algorithm is to
minimize the upper bound on the number of measurements
necessary to exactly determine P . We show an algorithm which
has an upper bound of 3.5n+ k + 2 measurements necessary,
where n is the number of vertices and k ≤ 3 the number of
acute angles of P . Furthermore, we show that our algorithm
requires O(1) computations per probe, and hence O(n) time
to determine P .

I. INTRODUCTION

Metrology, the study of measurement, has applications in
manufacturing, inspection, robotics, surveying, and health-
care ([3], [4]). An important aspect of metrology is the
problem of how to most efficiently use a given measurement
device, or probe, to obtain a specific piece of complex
information. When the measurement device and object of
interest are geometric, the problem of obtaining information
about the object through repeated use of the device is known
as geometric probing. A common version of this problem
is to deduce the shape of an unknown object using as few
probes as possible.

Efficient algorithms for probing convex polytopes have
been the subject of several papers, starting with Cole and
Yap [7], who studied the complexity (in terms of number of
probes required) of Determining the Shape of an Unknown
Convex Polygon by using probes which travel along a straight
line chosen by the algorithm and stop when they collide with
the polygon (later referred to as finger probes [1], [8], [9]).
A number of probe types and algorithms were presented by
Dobkin et al. [9]. These include the finger probes previously
studied by Cole and Yap; hyperplane probes, which consist
of a hyperplane (whose angle is chosen by the algorithm)
which sweeps over the whole space and stops when it
collides with the polygon; and silhouette probes (also called
projection probes [13]), which provide the projection of the

1Fatemeh Panahi is a Ph.D. candidate with the Department of Information
and Computing Sciences, Utrecht University, Utrecht, Netherlands. She is
supported by the Netherlands Organization for Scientific Research (NWO)

2Aviv Adler is an undergraduate student with the Department of Mathe-
matics, Princeton University, Princeton NJ, USA

3A. Frank van der Stappen is with the Department of Information and
Computing Sciences, Utrecht University, Utrecht, Netherlands

4Ken Goldberg is with the Departments of IEOR and EECS, UC
Berkeley, Berkeley CA, USA

Fig. 1. An unknown polygon P with proximity probes at x0, x1, x2

polygon onto a chosen subspace. Other probes which have
been studied for convex polygons include x-ray probes ([1],
[8], [12]), which measure the length of intersection between
a chosen line and the unknown polygon, and half-plane
probes [14], which measure the area of intersection between
a chosen half-plane and the unknown polygon.

In this paper, we consider proximity probes which, given
a point, return the distance to the boundary of the object in
question. We consider the case where our object of interest
is a convex polygon and our goal is to determine P exactly
with the fewest probes possible. Fig. 1 illustrates an instance
of our problem, with three proximity probes at x0, x1, x2
respectively measuring an unknown convex polygon P .

This type of problem is relevant for situations where
a relatively simple sensor must be used intelligently to
efficiently extract a piece of complex information. For ex-
ample, one application of our instance might be robotic
exploration with non-directional sonar where echo time is
proportional to distance. There are also possible relevancies
to semiconductor manufacturing, where it can be valuable to
inspect the precise shape of an etched silicon structure ([2],
[15]). Notable techniques in current use include scanning
probe microscopy (SPM) ([2]), which performs a continuous
scan over the material with a physical probe, and virtual
metrology (VM) ([5], [6]), which uses measurements of tool
parameters during the production of wafers to statistically
predict the final properties of the silicon. Our work suggests
a new approach of interactively using a simple proximity
probe a finite number of times to inspect these structures.

The remainder of the paper is organized as follows. In
Section II, we introduce the problem and the definitions
necessary for the algorithm. In Section III, we present our
algorithm and analyze its complexity per probe; we also
present a complete example of our algorithm for a simple
polygon P . In Section IV we show an upper bound on
the number of probes needed by our algorithm. Finally, in
Section V, we summarize our results and discuss future work.



II. PROBLEM FORMULATION AND PRELIMINARIES

We assume that all points and objects lie in the plane and
that all positioning and measurements are exact.

For any two points or closed sets of points a, b, dist(a, b)
denotes the Euclidean distance between a and b; for a lclosed
subset S of the plane, ∂(S) denotes its boundary, Int(S)
denotes its interior, S̄ denotes the closure of its complement
(so both S and S̄ contain ∂(S)), and Conv(S) denotes
its convex hull. We also define zero-disk to mean a disk
containing only its center.

In addition, for any disk of positive radius C and point z
on its boundary, we define L(C, z) to be the line tangent to
C at z. We also define H(C, z) to be the half-plane bordered
by L(C, z) which contains C, and H̄(C, z) to be the half-
plane bordered by L(C, z) which does not contain C.

A. Problem Formulation

Let P be an unknown convex polygon with n vertices
and edges contained in a known disk D, and let the probing
function fP be defined over the the plane as

fP (x) =

{
dist(x, P ) : x 6∈ Int(P )
−1 : x ∈ Int(P )

The probing algorithm is not explicitly given this function,
but is allowed to call it as many times as necessary to find P
exactly; the goal of this paper is to find an algorithm which
minimizes the upper bound of probes necessary (and allows
the next probe to be efficiently computed at each step). The
points x for which it calls the function fP are the probes,
and the disks of radius fP (x) centered at these points are
the probe disks, abbreviated as p-disks (by convention, if
fP (x) = −1 then no disk is produced). Every p-disk is by
definition incident to P at exactly one point.

B. Condensed Probe Disks

Suppose we have two (distinct) p-disks Ca, Cb such that
Ca ⊂ Cb. Since they both must be incident to P at
exactly one point, they must be incident to P at the same
point (otherwise it is impossible for one to contain the
other); this point will by definition be the only point in
∂(Ca) ∩ ∂(Cb), which we call pa,b. Furthermore, P must
be interior disjoint with the half-plane H(Cb, pa,b) since
P is convex, pa,b ∈ Cb, P , and Cb is not a zero-disk
(because ∅ 6= Ca ⊂ Cb). We thus define the condense
operation on Ca, Cb which outputs pa,b as a zero-disk and
associates with it the half-plane H(Cb, pa,b); the products of
this operation are called condensed probe disks (abbreviated
as cp-disks). Furthermore, any p-disks which neither contain
nor are contained by other p-disks (and so cannot be used
by the condense operation) are also considered to be cp-
disks. Note that cp-disks, like p-disks, must have exactly one
intersection point with P (since cp-disks are either p-disks
or zero-disks produced by the condense operation). If C∗ is
a cp-disk produced by the condense operation (and hence C∗

is a point), we let H(C∗) be its associated half-plane and
L(C∗) be the line bordering H(C∗).

A small note: it is possible for a p-disk Ca to be contained
in several other p-disks, none of which are contained in each
other; however, this can only happen when Ca is a zero-
disk and also at a vertex of P . In these cases, Ca will be
condensed with every disk containing it to produce multiple
condensed cp-disks.

C. Clockwise Ordering of cp-Disks

For any cp-disk C∗, let p(C∗) be its intersection point with
P . We note that by imposing a clockwise direction on the
boundary of P , we can impose a clockwise order on the set
of p(C∗) for all cp-disks C∗ (it is possible for two cp-disks to
have the same contact point on P ; but this can only happen
on vertices of P ). This then imposes a clockwise (cyclic)
ordering on the set of cp-disks, where if multiple cp-disks
happen to have the same contact point with P , they can be
ordered by the lines tangent to them at the common contact
point (a zero-disk C∗zero produced by the condense operation
is considered to have the line L(C∗zero) as its tangent; a
zero-radius cp-disk not produced by the condense operation
cannot share a contact point with another p-disk or cp-disk
since it would be contained by the other disk and hence not
be a cp-disk by definition).

From now on we will attach indices to the cp-disks
indicating their order. Specificially, we will let X be the
ordered set of cp-disks, and implicitly label the disks in X
as C∗1 , C

∗
2 , ..., C

∗
α. Since the ordering of cp-disks is cyclic,

we assume that additions and subtractions on indices are
performed modulo the number of disks.

Remark: It should be noted that in general, given an
arbitrarily probed set of cp-disks, prior knowledge of P is
necessary to deduce their exact ordering by the above criteria,
and thus the ordering cannot be used by the algorithm.
However, we will show that our algorithm chooses probes
in such a way that this labeling can always be determined
exactly without any prior knowledge of P .

D. Shadow Sets

Suppose we have two cp-disks C∗i , C
∗
j ; for both we define

a counterclockwise direction on their boundary. We define
the lines Li,j and L′i,j to be the lines tangent to both C∗i
and C∗j such that
• for both lines, C∗i and C∗j lie on the same side
• Li,j is given a direction coinciding with the counter-

clockwise direction imposed on the two cp-disks, while
L′i,j is given a direction opposing the counterclockwise
direction

• Both lines, in their given directions, intersect C∗i before
C∗j .

Note that Li,j is the same line as L′j,i but with the opposite
direction imposed on it.

We now define the rays li,j , l′i,j to be the rays respectively
lying on Li,j , L′i,j with their sources at the respective points
of tangency with C∗j . For a ray l, we define Hright(l) to be
the quarter plane lying directly to the right of the ray, and
Hleft(l) is analogously defined.



We then define the shadow set cast by C∗j with respect to
C∗i as

Si(j) = C∗j ∪ (Hleft(li,j) ∩Hright(l
′
i,j))

This set cannot contain any point of Int(P ), since P
cannot have any point in Int(C∗j ), must be incident to C∗i ,
and is convex; similarly, P cannot contain any point of
Int(Si(j)).

Notice that the boundary of C∗j is partly on the boundary
of Si(j) and partly in its interior; since P cannot contain any
point of Int(Si(j)), its point of intersection with C∗j must
be on the part of ∂(C∗j ) which is also on ∂(Si(j)). We call
this the feasible arc C∗i imposes on C∗j and denote it ζi(j).

E. The Neighbor-Infeasible Region

We first define the set Si−1(i)∪Si+1(i) to be the neighbor-
shadow set of C∗i (abbreviated as ns-set), denoted as S(i) for
convenience. Similarly, we define the set ζi−1(i) ∩ ζi+1(i)
to be the neighbor-feasible arc of C∗i , abbreviated as nf-arc;
we denote it as ζ(i) for convenience.

For cp-disks produced by the condense operation, we
instead use S(i) to refer to the half-plane H(C∗i ). Note that
since no cp-disk can be contained in Int(H(C∗i )), H(C∗i ) is
a superset of Si−1(i) ∪ Si+1(i) for these cp-disks.

The neighbor-infeasible region R can now be defined as

R =

m⋃
i=1

S(i) ∪ D̄

Intuitively, for each C∗i , we simply take the ns-set of
C∗i , the half-planes associated with all cp-disks generated
by the condense function, and the complement of D (the
disk which we were initially given as containing P ). Since
R is composed of these pieces, P must be entirely contained
in (the closure of) the complement of R.

We will show later that our algorithm behaves in such a
way that the complement of R (the neighbor-feasible region)
is a single connected piece; we therefore will assume it to
be the case now. The boundary of R will then be naturally
split into the following two basic types of pieces, which we
call sections:

1) arcs of the boundary of D
2) connected subsets of the boundaries of the sets S(i);

we denote ∂(S(i)) ∩ ∂(R) as ∂R(S(i))

Note that the second type of section has two possibilities:
a) if C∗i was not produced through the condense operation,

∂R(S(i)) is naturally split into at most three pieces, namely
• the nf-arc ζ(i)
• a segment of the ray li−1(i) (which we will denote l(i)

for convenience)
• a segment of the ray l′i+1(i) (which we will denote l′(i)

for convenience)
The other two pieces of the boundary of S(i), namely

l′i−1(i) and li+1(i) cannot lie on ∂(R) = ∂(R̄) because P
in that case would impose the wrong ordering of the cp-disks.

b) if C∗i was produced through the condense operation,
∂R(S(i)) is just L(C∗i )

Remark: Although the neighbor-infeasible set R is inte-
rior disjoint with P by definition, it is not necessarily the
case that it is the full set of all infeasible points, i.e. the
points which, given the p-disks, can’t be contained in P .

F. Confirmation of Vertices and Edges, and the Query Set

We say a point v is confirmed if by considering X it can
be shown that v is a vertex of P , and we say a line L is
confirmed if by considering X it can be shown that l contains
an edge of P ; an edge e of P is also referred to as confirmed
if the line extending it is confirmed. Any vertices or edges of
P which are not confirmed are called unconfirmed. The list
of confirmed vertices is denoted Vc and the list of confirmed
edges is denoted Ec.

Now we consider ∂(R), as described above as a collection
of pieces of the boundaries of the S(i) and D. Since ∂(R)
is continuous, there will be points which lie on more than
one of the specified sections. Some of these points will lie on
confirmed vertices or edges of P . The ones which do not will
be called the query set Q, from which we will always probe
(except for the very first probe). Furthermore, we define the
preferred query set Q∗ to be the subset of Q which does not
contain any intersection points between two p-disks.

To confirm a vertex or line, we need to count how many
p-disks are incident to it; an easy way to compute this
from the set of cp-disks is to count the number of cp-
disks tangent to L, double-counting those produced by the
condense operation (since they correspond to two p-disks).
Note that this means the number of cp-disks involved is at
most the number of p-disks involved.

Furthermore, note that the set of all cp-disks passing
through a point or tangent to a line must be consecutive.

We can confirm a point v as a vertex of P in these cases:
• if 3 p-disks pass through v
• if v is probed and fP (v) = 0 (this implies that v ∈
∂(P ); the fact that v was in Q, which is a necessary
condition for being probed by the algorithm, means that
v sits in a corner of R and thus cannot be in the middle
of an edge of P , meaning it must be a vertex of P )

• if a segment of (confirmed or unconfirmed) line L on
∂(R) and two p-disks touch v

• if segments of (confirmed or unconfirmed) lines L,L′

on ∂(R) and one p-disk touch v
If we confirm a vertex on a previously unconfirmed line,

we can automatically confirm the line as well.
Additionally, we can confirm a line L as containing

an edge of P if L is tangent to three p-disks. The cp-
disks representing these three p-disks will necessarily be
consecutive in X because they all have contact points with
P on the same edge (and no other cp-disks will have contact
points in the interior of this edge, since in that case L would
have been confirmed earlier), and so given a cp-disk C∗i we
just need to check the three consecutive triples containing it.

In addition, if line L is tangent to two p-disks and passes
through the intersection point v of the boundaries of two
other p-disks, then both L and v can be confirmed. Also, if
L is tangent to a p-disk and goes through the intersections



of the boundaries of two different pairs of p-disks (call these
points v1, v2), we can confirm v1, v2 and L.

Whenever a vertex v is confirmed, it automatically implies
that probing v would return fP (v) = 0; this means we
can place a p-disk there without explicitly probing it, and
perform the condense operation with any existing p-disks
which happen to contain v. Since they all have the same
contact point v with P , they will be consecutive in X , and
later on we will show that there cannot be more than 3 such
disks for any v, so this process takes constant time.

Similarly, whenever a line L is confirmed, we always have
at least one, and often more than one, cp-disks tangent to
L; at each tangent point x we know that fP (x) = 0 so
we may place a p-disk there without actually executing the
probe function, and perform the condense operation with the
original tangent p-disk to create a new cp-disk. Since an edge
is always confirmed if it is incident to 3 cp-disks, the number
of condense operations we need to perform is at most 3 for
each confirmed line; thus this process takes constant time.

Remark: Thanks to the fact that we use the condense
operation when we confirm vertices and edges (without
requiring new probes), the lines corresponding to these con-
dense operations are automatically incorporated into ∂(R).

III. THE ALGORITHM

We now present an efficient algorithm for solving the
probing problem described in Section II. The algorithm
maintains the circular ordered list X of cp-disks, sorted in
clockwise order of their intersection point with P around
∂(P ), an algebraic representation of the neighbor-infeasible
region R, lists of the confirmed vertices (Vc) and edges (Ec)
of P , and representations of the query set Q and preferred
query set Q∗. We present it in two parts: the first dealing
with how to generate the next probe given X , R, Vc, Ec, Q,
and Q∗, and the second dealing with how to update these
objects given a new probe result. The algorithm terminates
once (a) at least one vertex and edge have been confirmed
and (b) every confirmed vertex is on two confirmed lines and
every confirmed line contains two confirmed vertices.

In addition, a some extra information and pointers will be
stored in these lists in order to allow the algorithm to execute
all the steps in constant time, most notably pointers in Q for
each element which point to its neighbors (in both X and
Q); however, we omit the exact details.

A. Algorithm for Generating New Probes

The algorithm for generating new probes is divided into
two distinct phases (preceded by a one-probe initialization):
in Phase 1, we probe arbitrarily from the preferred query set
Q∗ when possible; when it is not, we choose instead from Q
(both Q∗ and Q are by definition a subset of the boundary
of R) until some edge is confirmed; in Phase 2 (once an
edge is confirmed), we probe points designed to confirm the
vertices and edges of P in (roughly) clockwise order.

We also add the following definitions for reference in the
algorithm:

• the first edge of P to be confirmed is denoted e1 (i.e.
the edge contained by the first line confirmed)

• the edges and vertices of P in clockwise order are
e1, v1, e2, v2, ..., en, vn

• for any edge ei, we let L∗i be the line containing ei; note
that it is the lines, not the edges themselves, which are
directly confirmed by the algorithm

• at any given step of the algorithm, we let t be the largest
index such that e1, v1, e2, v2, ..., et−1 are all confirmed
(we can determine t from Ec and Vc without any extra
direct knowledge of P )

• l is a ray originating on some point on et−1 which we
know is in P (for all t > 2, we use vt−2; otherwise we
use the contact point of some p-disk with the confirmed
line containing et−1) and extending et−1 in the direction
coinciding with the clockwise direction around the
boundary of P (this direction is also determinable from
Ec and X without any extra knowledge of P )

• for any set S and ray γ, let ρ(γ, S) be the furthest point
along γ which is also in S

At the start, X,Vc, Ec, Q,Q∗ are empty and R = D̄, so
we simply probe from an arbitrary point on the boundary of
D. Because P ⊂ Int(D), this disk will have positive radius;
because it is the first p-disk, it cannot be condensed and is
thus also a cp-disk. In addition, it will not have any neighbors
in X since it is the only disk in X , so its shadow set is by
convention defined to be itself. Thus, R is simply the union
of this disk and the complement of D, and the boundary of R
will consist of an arc of this disk plus an arc of D. Hence,
by definition, Q consists of the two points of intersection
between the boundaries of D and the first cp-disk.

Algorithm Steps:

1) While no line has been confirmed, at each step we
check if Q∗ has at least one element. If it does, we
choose an arbitrary point x ∈ Q∗ and probe it; if not,
we choose an arbitrary point x ∈ Q and probe it.

2) Once a line has been confirmed, we let the edges and
vertices of P , the index t, and the ray l be defined
as above. We repeat the following step until both et
and vt−1 are confirmed (at which point, by definition,
the index t increases, and we start Phase 2 again; we
terminate once vt is confirmed on e1).
Let x = ρ(l, R̄); an intuitive idea of x is that it
is the furthest clockwise point on the confirmed line
containing et−1 which is not in the neighbor-infeasible
region R. We note then that since x is the furthest point
on l ⊂ L∗t−1, it must also be on some other object on
the boundary of R; hence, either x ∈ Vc (if x happens
to be vt−1 and is already confirmed) or x ∈ Q.
If x ∈ Q then it must be both on L∗t−1 and some other
piece of the boundary of R. In particular, it can be on
the following
• an nf-arc ζ(i) of some
• another confirmed line
• an unconfirmed line, either corresponding to the



output of a condense function or incident to two
(consecutive) cp-disks

• the boundary of D
We then do the following:

a) if x ∈ Vc, call Next Edge
b) if x ∈ Q and x 6∈ ζ(i) for all i, probe x
c) if x ∈ Q and x ∈ ζ(i) for some i, then it is one

endpoint of the arc ζ(i)∩∂(R); let x′ be the other
endpoint. This point by definition will either be
x’s neighbor in Q or will be an endpoint of ζ(i),
and hence is retrievable in constant time

Remark: Although in Phase 1 we are allowed to probe
any x ∈ Q∗ (or, if Q∗ is empty, any z ∈ Q) at each step,
if we wish to minimize the time complexity of choosing the
next probe at each step, we need a retrieval method which
produces a member of Q∗ or Q in constant time; having
either a stack or a queue as an additional data structure for
Q∗ and Q are the most natural ways of achieving this.

The Next Edge Procedure
This procedure is called when et−1 and vt−1 are both

confirmed but et is not confirmed. Let us consider the set
of cp-disks incident to vt−1; they will be consecutive in X ,
and will have been produced by the condense function (at
the moment that vt−1 was confirmed). Let C∗i be the last cp-
disk among them; let NQ(C∗i ) be C∗i ’s next neighbor (in the
clockwise direction) in Q. We then probe NQ(C∗i ) (updating
the maintained information as we go so i and NQ(C∗i ) can
change after each probe) until the next edge is confirmed,
at which point t can be updated and we return to the main
loop of Phase 2. We note that NQ(C∗i ) is actually the point
on L(C∗i ) furthest from vt−1.

The Pseudocode
For the pseudocode, we introduce some extra notation and

functions (and show, where necessary, that these functions
can be computed efficiently). We define the sets E∗c , V

∗
c to

be respectively the subset of Ec consisting of those lines
which do not contain two points from Vc, and the subset
of Vc consisting of those points which are not contained
by two lines from Ec. Intuitively, E∗c and V ∗c consist of
the confirmed lines and vertices whose adjacent vertices and
lines, respectively, have not been confirmed yet. These sets
are easy to maintain with flags attached to both Ec and Vc.

For the case (c) of Phase 2, if x ∈ ζ(i), then we denote
the other endpoint of the arc ζ(i) ∩ ∂(R) as q(x).

For any x ∈ Q, we note that since we can retrieve its
neighbors in X in constant time, we can determine whether
it is on some nf-arc in constant time; we will treat this as
a binary valued funtion nf(x) which is true when x is on
some nf-arc, and false otherwise.

The RandomElement function refers to random or arbitrary
choice of some element from a set; the Probe function refers
to the full update algorithm (described in Section IIIB),
which uses and modifies all the objects in the program. Most
object updates occur within the Probe function.

Note that by the time Phase 2 starts, by definition, we will
have at least one member of Ec; note also that maintaining
Q∗ is only necessary for Phase 1.

Algorithm 1 Identifying P using proximity probes
1: procedure DETERMINEP(D)
2: Vc, Ec ← null . Initialization
3: ∂(R)← ∂(D)
4: x← RandomElement(∂(D))
5: run Probe(x)
6: while Ec = null do . Phase 1
7: if Q∗ 6= null then
8: x← RandomElement(Q∗)
9: else

10: x← RandomElement(Q)
11: run Probe(x)
12: while E∗c 6= null and V ∗c 6= null . Phase 2
13: x← ρ(L,R)
14: if x ∈ Vc then . Case a:
15: run NextEdge(x) . x = vt−1
16: else if nf(x) = false then . Case b:
17: run Probe(x) . x is not on an nf-arc
18: else . Case c:
19: x′ ← q(x) . x is on an nf-arc
20: run Probe(x′)
21: return Vc . Return P as a set of vertices
22: end procedure

23: procedure NEXTEDGE(x)
24: while ¬∃e ∈ (Ec\et−1)|x ∈ e
25: x′ ← NQ(C∗i )
26: run Probe(x′)
27: end procedure

B. Algorithm for Handling a New Probe

The algorithm for updating the maintained information
(X , R, Ec, Vc, Q, Q∗) is relatively simple since we usually
probe from the set Q (since Q∗ ⊂ Q). To update X in this
case, we merely note that each point x ∈ Q is specifically
linked to two consecutive ‘neighbors’ in X .

If the new p-disk contains or is contained by one or
both of the ’neighbor’ cp-disks of its center, we perform
the condense operation; this check trivially takes constant
time since it has only two neighbors. It cannot contain or be
contained by any non-neighboring cp-disks, and therefore
checking whether the condense operation has to be used has
constant time complexity per step.

The only case where we do not probe from Q is in Phase
2, when line L∗t−1 containing edge et−1 is meets ζ(i) (by
definition at an endpoint of ζ(i) ∩ ∂(R)) and, in addition,
the other endpoint of ζ(i) ∩ ∂(R) is not in Q. Even if we
cannot determine it from our observations alone, our original
definition of the ordering (depending on P ) is still valid;
because the new disk has its center on the neighbor-feasible
arc of C∗i , it must be a neighbor of C∗i . Furthermore, since
it is the other (further clockwise around the boundary of R̄)



endpoint of ζ(i)∩∂(R), the remaining set of points at which
C∗i can be incident to P , which is a subset of ζ(i) ∩ ∂(R),
is counterclockwise from all points of the new disk (around
the boundary of R̄). Hence, the new disk cannot be between
C∗i−1, C

∗
i and can be inserted between C∗i , C

∗
i+1.

The remainder of the updates involve updating Vc and Ec,
and in turn updating Q to not include confirmed vertices or
edges; as any vertex or line is automatically confirmed when
three p-disks are tangent to it, and thus these checks remain
in constant time. Updating the relevant stored information
is constant for each element of R,Q,Q∗, Vc, Ec and X we
update, and for each set only a bounded number of elements
(the neighbors of the probed point) are updated, so the total
updating time has complexity O(1) per probe.

C. Example

Here we present a simple example (Fig. 2) of our algo-
rithm determining a polygon P with four vertices, one of
which is acute (so n = 4, k = 1). Probes are represented
by filled dots and labeled in order (starting from x0); cp-
disks are shown by black circles (with cp-disks which were
condensed shown by dashed white lines). In Phase 1 of the
algorithm Q∗ is denoted by empty dots; in Phase 2, the next
probe is denoted by an empty dot.

IV. BOUNDING THE REQUIRED NUMBER OF PROBES

We first establish the following notation. Let v be a vertex
of P ; we then write 6 P (v) to refer to the angle of P at v. If
v is confirmed, we note that this means the algorithm would
have condensed the disks incident to v, so that R̄ would have
an angle at v; we write 6 R(v) to refer to this angle.

Note that 6 P (v) is always contained in 6 R(v) and that
6 R(v) never increases as the algorithm goes on.

We omit the proofs of the following lemmas; however, the
interested reader can find them in our technical report [16].

A. Preliminary Lemmas

Lemma 4.1: Assume that v is the intersection point on
∂(R) of the boundaries of two p-disks Ci and Cj , neither of
which contains the other. If we probe from x ∈ R̄ such that
x 6= v, the resulting p-disk C cannot pass through v unless
6 P (v) is acute. Additionally, if 6 P (v) is acute and C passes
through v, then 6 R(v) becomes acute.

Lemma 4.2: Let v be a confirmed vertex of P , and let
x ∈ R̄ be the next probed point which produces a disk C
(v is already confirmed, so x 6= v since we don’t probe
confirmed vertices). Then C can be incident to v only if
6 P (v) is acute, 6 R(v) is not acute; futhermore, afterwards,
6 R(v) will be acute (so no new p-disk can be incident to v).

Corollary 4.3: Let v be a vertex of P such that when v
is confirmed, it is not by being probed directly. Then, when
the algorithm finishes,
• if 6 P (v) is not acute, the number of p-disks incident to

it is at most 2
• if 6 P (v) is acute, the number of p-disks incident to it

as at most 3

Fig. 2. (a) An example of a quadrilateral with one acute-angle vertex
which is contained in a known disk. Let the acute angle be denoted by v1,
and the other vertices are labeled in clockwise order, as per the notation
used in the algorithm; (b) x0 is an arbitrary point on the boundary of R
and x1 is one of the intersection points of the disk resulting from x0 and
∂(R); (c) Illustration of all probes but one of Phase 1 of the algorithm;
(d) After seven probes the first edge is confirmed, and the disks incident
to that edge are then condensed; (e) In Phase 2 of the algorithm, case (c)
of the algorithm occurs, resulting in a probe at x7. This confirms v1, and
therefore we apply the condense operation to the cp-disks centered at x2
and x7. It can be observed that two p-disks are incident to v1 (which is the
acute angle) i.e. ω(v1) = 2; (f) After 14 probes, P has been determined

Lemma 4.4: Let e be a confirmed edge and v be one of
its endpoints. Let x ∈ R̄ such that x doesn’t lie on the line
extending e. If we probe from x, the resulting disk cannot
be incident to v unless v is an acute angle vertex of P .

Remark: We note that as long as we only probe from
points in ∂(R) which are not confirmed vertices or in
the interior of any line segment on ∂(R) contained by a
confirmed line, we will never create a p-disk which will be
incident to the interior of any previously confirmed edge.

B. Undesirable Confirmations

The bounds derived in the previous section are only
violated (by 1) if v is confirmed while incident to three p-
disks, one of which is the zero-disk centered at v itself (this
applies regardless of whether 6 P (v) is acute). However, we
note that if one of the two non-zero p-disks is also tangent
to one of the edges of P adjacent to v, we may associate it



with that edge instead (so that the bound is not considered
violated), and hence need only worry about the possibility
that neither of the non-zero p-disks are tangent to an adjacent
edge. We call such cases undesirable confirmations.

Lemma 4.5: Let m be the number of undesirable confir-
mations which occur over the course of the algorithm. Then
m ≤ n/2 + 1.

C. Analysis of the Algorithm

We now wish to find an upper bound for the number of
probes used by our algorithm; this is achieved by analyzing
the number of p-disks that can be incident to any edge or
vertex of P when it is confirmed. We now assume that
no undesirable confirmation occurs; later, we will note that
by Lemma 4.5, each undesirable confirmation adds at most
one probe to the upper bound, and that the number m of
undesirable confirmations is bounded above by n/2 + 1, and
add this to the bound we derived.

At any given step in the algorithm, let φ(e) and φ(v)
denote the number of p-disks incident to unconfirmed edge
e and unconfirmed vertex v respectively; and let ω(e) and
ω(v) denote the number of p-disks which are incident to
confirmed edge e and confirmed vertex v, respectively.

We first consider the number of p-disks any object can
have adjacent to it at the moment it is first confirmed; by
convention, if a p-disk is incident to both some confirmed
vertex and some confirmed line(s) (if it is a zero-disk, it can
be incident to a vertex and two lines), we associate it with
the vertex only. We perform this analysis on the two basic
phases of the algorithm.

For Phase 1 (i.e. confirming the first edge), there are two
possible cases for the number of probes which will suffice
to confirm the first edge e1 with clockwise endpoint v1:
• If φ(v1) ≤ 1 three disks are sufficient to confirm e1.
• If v1 is confirmed or φ(v1) = 2, then two disks are

sufficient to confirm e1.
We will conduct the same analysis for Phase 2 by comput-

ing the possible values of ω(vi−1) and ω(ei) when they are
first confirmed (which depends on whether vi−1 is acute or
not) for 1 < i ≤ n. We note that no vertex can be confirmed
on ∂(D) because P ∈ Int(D).
Case 1: vi−1 is not confirmed and φ(vi) ≤ 1. Since vi−1
is not confirmed but ei−1 is confirmed, φ(vi−1) ≤ 1. We
consider the two possible sub-cases: either vi−1 is not an
acute angle vertex of P , or it is.
• Suppose vi−1 is not an acute angle vertex. It could either

have been confirmed by case (b) or case (c) from Phase
2 of the algorithm.

– Suppose it was confirmed by case (b); let x be
the point probed. For case (b) of the algorithm to
confirm a vertex, the result of the probe must be
0 (i.e. fP (x) = 0), and this new zero-disk is the
only disk incident to vi−1; thus ω(vi−1) = 1. In this
case, x (which is actually vi−1) cannot lie on the
boundary of D (as in this case x ∈ P ⊂ Int(D)), so
x is on a segment of an (confirmed or unconfirmed)

line L on ∂(R); this line will then be confirmed as
ei with ω(ei) = 2.

– Suppose it was confirmed by case (c). By
Lemma 4.4, the new p-disk cannot pass through
vi−1, so ω(vi−1) = 1. We observe that to confirm
vi−1, the new p-disk must reduce the feasible arc
of the previous p-disk containing vi−1 to a single
point; to do this, it must confirm ei. Hence, since
ω(vi−1) = 1 and φ(vi) ≤ 1, we get ω(ei) = 2.

Therefore, in all cases, ω(vi−1) = 1 and ω(ei) = 2.
• If vi−1 is an acute angle vertex. This is similar to the

above case, except that as Lemma 4.4 doesn’t hold for
acute angles, we include the possibility that in case (c)
the resulting p-disk will pass through vi−1. If so, vi−1
is confirmed, and the next iteration of the algorithm will
be case (a). As φ(vi) ≤ 1, ω(ei) = 2, and when vi−1
is confirmed in the next iteration ω(vi−1) ≤ 2.

Case 2: vi−1 is not confirmed and either φ(vi) = 2 or vi is
confirmed. This case is similar to case 1, except that because
φ(vi) = 2 (or vi is confirmed), ei is incident to at most
one disk, and vi−1 will be confirmed immediately after ei is
confirmed. So, ω(ei) = 1 and ω(vi−1) ≤ 2, if vi−1 is acute
and ω(vi−1) = 1 if it is not.
Case 3: vi−1 is confirmed and 0 ≤ φ(vi) ≤ 1. We consider
the two possible sub-cases: either vi−1 is not an acute angle
vertex of P , or it is.
• vi−1 is not an acute angle vertex. Since vi−1 is con-

firmed before ei and vi−1 is not an acute angle, by
Lemma 4.4, ω(vi−1) = 2, and case (a) will immediately
follow in the algorithm. The next edge ei will be
confirmed by two incident disks since φ(vi) ≤ 1, so
ω(ei) = 2.

• vi−1 is an acute angle vertex. According to Lemma 4.4,
it is possible that vi−1 has been confirmed with three
disks as vi−1 is an acute angle. Therefore, ω(vi−1) ≤ 3.
As in the previous case, ω(ei) = 2.

Case 4: vi−1 is confirmed and either φ(vi) = 2 or vi is
confirmed. We again consider the same two possible sub-
cases as in the above cases.
• vi−1 is not an acute angle vertex. As in case 3,
ω(vi−1) = 2, but the next edge will be confirmed with
one incident disks since vi is incident to more than one
disk (or already confirmed), so ω(ei) = 1

• vi−1 is an acute angle vertex. As in case 3, ω(vi−1) ≤ 3,
and ω(ei) = 1 since vi is incident to multiple disks (or
already confirmed).

Finally, it is clear that vn will be confirmed with one disk.
Table I summarizes the result for the above four cases.

Theorem 4.6: Our algorithm uses at most 3n+m+k+1 ≤
3.5n + k + 2 probes to find P , where k ≤ 3 is the number
of acute angles of P ; each probe is computed in O(1) time,
thus leading to an overall time complexity of O(n).

Proof: We note that no p-disk generated at any point
by the algorithm can be incident to a previously-confirmed
edge or to a previously-confirmed non-acute angle vertex
once both edges adjacent to it have been confirmed. Note



also that since the algorithm never probes from the interior
of R̄, the algorithm never uses a probe which returns −1.
Therefore, the number of probes needed is equal to the sum
of the number of p-disks incident to each edge and vertex
of P when they are confirmed, with the possible additional
k for the acute angles already taken care of by assuming the
worst case at time of confirmation. Let nj be the number
of times case j occurs, and kj be the number of times case
j occurs with an acute vertex; then

∑4
j=1 nj = n − 1 and∑4

j=1 kj ≤ k since the cases begin once e1 is confirmed.
We now consider the number of p-disks incident to each

edge and vertex of P when they are confirmed, assuming no
undesirable confirmations:
• e1 is incident to at most 3 p-disks when it is confirmed
• For j = 1, 4, by Table I we note that ω(vi−1)+ω(ei) ≤

4 if vi−1 is acute, and ω(vi−1) + ω(ei) = 3; hence at
most 3nj + kj probes were used.

• For j = 2, by Table I we note that ω(vi−1)+ω(ei) ≤ 3
if vi−1 is acute, and ω(vi−1) + ω(ei) = 2; hence at
most 2n2 + k2 probes were used

• For j = 3, by Table I we note that ω(vi−1)+ω(ei) ≤ 5
if vi−1 is acute, and ω(vi−1) + ω(ei) = 4; hence at
most 4n3 + k3 probes were used

Consider what happens in case 3 (with vertex vi−1 and
edge ei); it occurs when vi−1 is incident to two disks (or is
confirmed) before ei is confirmed. If i = 2, then e1 must have
been adjacent to 2 p-disks. If i > 2, then case 3 was preceded
by either case 2 or case 4; if it was case 4, then since vi−1
was already confirmed, ei−1 must have been confirmed with
one fewer p-disk than our above bounds.

Thus, every instance of case 3 (which requires one more
probe per vertex-edge pair than cases 1 or 4), there is a
corresponding instance either of case 2 (which requires one
fewer probe per vertex-edge pair than cases 1 or 4) or of case
4 (or the base case) in which at least one fewer probe was
used than the bound above. So, since case 3 is the only case
in which more probes are required than cases 1 and 4, and
since we showed that every instance of case 3 is ‘offset’, we
can bound the total number of probes needed by the number
needed if only cases 1 and 4 occurred.

Thus, the pairs (v1, e2), ..., (vn−1, en) plus e1 require at
most 3n+ k probes to confirm; the final vertex vn requires
one more, giving an upper bound of 3n+ k+ 1 probes with
the assumption that no undesirable confirmations occurred.
Each undesirable case increases the upper bound by at most
1, and the number of such cases (by Lemma 4.5) is m ≤
n/2 + 1. Hence, we compute our true upper bound as 3n+
m + k + 1 ≤ 3.5n + k + 2 probes. Finally, we note that
in Section III(B) we showed that each probe requires O(1)
time computation, and therefore the total computation time
required by the algorithm is O(n).

V. CONCLUSION AND FUTURE WORK

In this paper, we defined a type of proximity probe and
showed an algorithim which finds the shape an unknown
convex polygon P (with n vertices, k ≤ 3 of which are

TABLE I
ω(vi−1), ω(ei) FOR 1 < i ≤ n

vi−1: Not acute vi−1: acute
Case vi−1 vi ω(vi−1), ω(ei) ω(vi−1), ω(ei)

1 NC NC, φ(vi) ≤ 1 1, 2 ≤ 2, 2
2 NC C or φ(vi) = 2 1, 1 ≤ 2, 1
3 C NC, φ(vi) ≤ 1 2, 2 ≤ 3, 2
4 C C or φ(vi) = 2 2, 1 ≤ 3, 1

acute angle vertices) requiring at most 3.5n+ k+ 2 probes,
with each probe requiring O(1) time to compute.

In future work we will explore extending these results to 3
and higher dimensions, and to the case where measurements
are not precise and lie within some bounds of the true value,
which may permit bounding the shape of an unknown object.
We will also look at the alternative problem, introduced
by Goldberg and Rao [11], of identifying the object P
from a finite set of possible objects by probing. Finally, we
will consider non-convex objects inspired by the approach
that Boissonnat and Yvinec [10] developed to extend finger
probes to non-convex polyhedra, and study the problem of
using distance probes from inside the polygon.

REFERENCES

[1] Skiena, S. S., Problems in geometric probing. Algorithmica, 4(4):599-
605,1989.

[2] Sergei V. K.; Alexei, G, Scanning Probe Microscopy of Functional
Materials, 2011.

[3] Dotson, Connie L., Fundamentals of Dimensional Metrology, 2006.
[4] Czichos, H., Saito, T., and Smith, L. E., Springer Handbook of

Metrology and Testing, 2011.
[5] Susto, Gian A., et al., An Information-Theory and Virtual Metrology-

based approach to Run-to-Run Semiconductor Manufacturing Control.
Proceedings of the 8th IEEE International Conference on Automation
Science and Engineering, 358-363, August 2012

[6] Pampuri, Simone, et al., Multistep Virtual Metrology Approaches for
Semiconductor Manufacturing Processes. Proceedings of the 8th IEEE
International Conference on Automation Science and Engineering, 91-
96, August 2012

[7] Cole, R. and Yap, C. K.. Shape from probing. Journal of Algorithms,
8(1):19-38, 1987.

[8] Skiena S. S., Interactive Reconstruction via Geometric Probing, Pro-
ceedings of the IEEE 80, 1364-1383, 1992.

[9] Dobkin, D., Edelsbrunner, H., and Yap, C. K., Probing convex poly-
topes. In Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing, 424-432, Berkeley, California, 1986.

[10] Boissonnat, J. D. and Yvinec, M., Probing a scene of nonconvex
polyhedra. Algorithmica, 8:321-342, 1992.

[11] Rao, A. S. and Goldberg, K. Y., Shape from diameter: Recognizing
polygonal parts with a parallel-jaw gripper. Intl. J. of Robotics
Research, 13(1):16-37, 1994.

[12] Meijer, Henk and Skiena, Steven S., Reconstructing Polygons from
X-Rays, Geometriae Dedicata, 61(2), pp 191-20, 1996.

[13] Li, S.-Y. R., Reconstruction of polygons from projections. Information
Processing Letters, 28:235-240, 1988.

[14] Skiena S. S., Probing Convex Polygons with Half-Planes, Journal of
Algorithms 12, 359-374, 1991.

[15] Niemann, James, Electrical Measurements on Nanoscale Materials.
Keithley Instruments tutorial paper, 2004.

[16] F. Panahi, A. Adler, A.F. van der Stappen, K. Goldberg, Efficient
Distance Probing Algorithms for Metrology, Technical Report UU-
CS-2013-010, Dept. of Information and Computing Sciences, Utrecht
University, Utrecht, the Netherlands (2013).


