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Abstract. A “ribbon” is a surface traced out by sweeping a constant width line
segment along a spatial curve. We consider the problem of planning multiple
disjoint and collision-free ribbons of finite thickness along curvature and torsion
constrained curves in 3D space. This problem is motivated by the need to route
multiple smooth channels through a 3D printed structure for a healthcare applica-
tion and is relevant to other applications such as defining cooling channels inside
turbine blades, routing wires and cables, and planning trajectories for formations
of aerial vehicles. We show that this problem is equivalent to planning motions
for a rigid body, the cross-section of the ribbon, along a spatial curve such that
the rigid body is oriented along the unit normal to the curve defined according
to the Frenet-Serret frame. We present a two stage approach. In the first stage,
we use sampling-based rapidly exploring random trees (RRTs) to generate fea-
sible curvature and torsion constrained ribbons. In the second stage, we locally
optimize the curvature and torsion along each ribbon using sequential quadratic
programming (SQP). We evaluate this approach for a clinically motivated ap-
plication: planning multiple channels inside 3D printed implants to temporarily
insert high-dose radioactive sources to reach and cover tumors for intracavitary
brachytherapy treatment. Constraints on the curvature and torsion avoid disconti-
nuities (kinks) in the ribbons which would prevent insertion. In our experiments,
our approach achieves an improvement of 46% in coverage of tumor volumes as
compared to an earlier approach that generates each channel in isolation.

1 Introduction

Our work is motivated by applications where contiguous pathways or channels have to
be routed through 3D environments while avoiding collisions with obstacles. In partic-
ular, we consider a clinical application of intracavitary brachytherapy where radioactive
doses have to be delivered to cancerous tumors occurring in body cavities such as oral,
rectal, gynecological, auditory, and nasal. Garg et al. [15] demonstrated that 3D printing
can be used to design customized implants that conform to the patient anatomy. These
implants have hollow internal channels that provide passage to radioactive sources.
These implants allow precise positioning of radioactive sources that sufficiently irra-
diate the tumors while minimizing radiation to healthy tissues, which can potentially
improve treatment outcomes. They constructed implants with mutually collision-free
channels that provide passage to catheters carrying a radioactive source (Fig. 1(a)).

The effectiveness of these implants for radiation treatment depends on how effec-
tively the candidate dose dwell segments deliver radiation to the tumor volume by cov-
ering the tumor surface proximal to the implant. The use of single channels is not suf-
ficient for large tumors. In this work, we address this issue by generating contiguous
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Fig. 1. 3D printed implants for intracavitary brachytherapy: Hollow internal channels (mutu-
ally collision-free) embedded within a 3D printed implant for delivering radiation to tumors (red).
The channels provide passage to radioactive sources. The candidate dose dwell segments (shown
in dark blue) are aligned tangentially and placed proximal to the tumors to achieve sufficient
dose distribution to the tumor volume while minimizing radiation exposure to healthy tissue. (a)
Single channels computed using the approach of Garg et al. [15]. (b) Compared to single chan-
nels, multiple channels in ribbon-like arrangements can increase coverage of the tumor volume
that is directly irradiated, leading to improved treatment outcomes. The challenge is to generate
such mutually collision-free, curvature and torsion constrained ribbons from the candidate dwell
segments to the entry region while staying within the implant volume.

channels within the 3D printed implant. The resulting arrangement of channels, which
looks like a ribbon (Fig. 1(b)), can increase coverage and hence achieve sufficient dose
distribution to large tumor volumes. These ribbon-like arrangements are also spatially
efficient, and allow for a larger number of channels to be embedded within the im-
plant. Such arrangements are also better localized in space, thus improving the struc-
tural integrity of the 3D printed implant during the printing process. We note that such
ribbon-like channel arrangements also commonly occur in other applications such as
for routing wires inside electronic equipment such as computers and routing cooling
channels through turbine blades [18].

The channels in these ribbons have to allow a radioactive source of finite dimen-
sions to pass through [15], which imposes a constraint on the maximum instantaneous
curvature of the ribbon. The spatial curve that generates the ribbon should also be con-
tinuous and differentiable (at least C1-continuous) since kinks in the curve would not
allow catheters to pass through the channels. The catheters carrying the radioactive
source also have limited flexibility and have to be pushed/pulled through the channels
during treatment, which imposes a constraint on the cumulative curvature and torsion
(or twist) along the ribbon. Imposing constraints on the curvature and torsion is also im-
portant from the perspective of fabricating these implants. During the printing process,
the spatial volume corresponding to channels is printed with a soluble support mate-
rial that is later dissolved to create hollow channels [23]. However, unnecessary turns
(curvature) and twists (torsion) in the channels can prevent the support material from
being completely dissolved. In addition, each customized implant would have multi-
ple channels that provide access to different tumors and these channels would have to
be mutually collision-free since any intersection between channels would lead to forks



within the channels. This could potentially cause undesirable ambiguity in the motion
of a catheter when pushed through such a channel.

In this work, we consider the problem of generating such curvature and torsion
constrained ribbons in 3D spaces that avoid collisions with obstacles and other ribbons.
In geometry, a ribbon is a swept surface traced out by sweeping a constant width line
segment along a spatial curve. In our application, we consider a rigid body that describes
the cross-section of the channels in a ribbon. The rigid body being swept out is oriented
along the unit normal to the curve. There are infinitely many choices of orthonormal
frames [5] along a spatial curve for orienting the rigid body. In our work, we choose
the Frenet-Serret frame which can be explicitly described in terms of the curvature and
torsion along the curve [5].

We adopt a two stage approach for generating ribbons with the aforementioned
specifications. We use a rapidly-exploring random trees (RRT) planner [22] that gen-
erates feasible curvature and torsion constrained candidate ribbons. These planners ex-
plore the configuration space by random sampling. However, the randomized nature of
these planners can cause unnecessary changes in curvature and torsion along the ribbon.
We locally minimize the curvature and torsion by using an optimization method based
on sequential quadratic programming (SQP) [11] that is modified for our application. In
doing so, we combine the benefits of a global exploration strategy using a randomized
planner and a local optimization strategy to generate high quality ribbon trajectories.

We study the effectiveness of our approach for designing multiple ribbon-like ar-
rangements of channels within 3D implants. As shown in Fig. 1(b), ribbon-like ar-
rangements lead to improved coverage of the tumor volume (46% improvement in our
experiments), which allows for more effective treatment. We also show that ribbon-like
arrangements are spatially efficient, allowing us to embed a larger number of channels
within the implant as compared to prior work that embeds single channels [15, 11].

2 Related Work

The geometry of swept surfaces and swept volumes has been extensively studied in
the literature [13]. A ribbon is a particular example of a swept surface where a con-
stant width rigid body is swept along a spatial curve [19, 14]. Ribbons find applications
in a number of domains including computer aided geometric design [34], to deform
3D shapes in solid modeling [24], and geometry modeling of structures such as DNA
strands [17]. Ribbons have also been used to layout arrangements of roads [39] and for
path planning for rigid formations of nonholonomic vehicles [2, 21]. Sampling-based
planning was used to generate variable width ribbon-like paths between a camera and
moving object in the environment [16]. The computed paths were smoothed to generate
pleasing camera motions. The notion of grouping parallel paths, similar to ribbons, has
also been studied for coverage applications in robotics such as machine milling, lawn
mowing, snow removal, and planning search and rescue operations [7].

Prior work has also explored the topic of modeling and finding minimum energy
configurations of linear deformable objects such as suture threads [25, 6] and elastic
ribbons or strips [3]. The equilibrium or minimum energy configurations of these elastic
objects inherently minimize curvature and torsion along the length of the object. These
methods could be used to compute a ribbon configuration that minimizes curvature and



torsion. However, it is not clear if these methods could be used to impose constraints on
the curvature and torsion along the length of the ribbon. Furthermore, these methods do
not consider generation of collision-free configurations directly, and instead generate a
sequence of deformations in the object that avoid collisions with obstacles [25, 6]. In
our work, the ribbons are not physically-based and are carved out of the 3D implant
volume, thus allowing us to directly generate ribbons by planning motions for a rigid
body that describes the cross-section of the ribbon.

Planning smooth motions of rigid bodies in 3D has also been studied [41, 2, 4, 9].
This requires planning in the space of 3D positions and orientations, also commonly
referred to the SE(3) group. However, prior work has addressed the issue of generat-
ing minimum cost trajectories that inherently minimize curvature and torsion along the
trajectory in environments without obstacles.

We also note that the motion model that describes the evolution of the ribbon surface
also applies to other domains, including modeling the motion of an airplane, a roller
coaster, or bevel-tipped steerable needles [38]. In the case of steerable needles, the rigid
body is assumed to be a point while in the case of the continuum robots, the rigid body
is assumed to have a circular cross-section. In particular, motion planning for steerable
needles has been extensively studied [1, 12, 28, 40, 20, 36, 29, 11]. Our approach can be
used to explicitly limiting the torsional rotation of the needle, thus potentially improving
planning and control of steerable needles [35].

The motivation behind using 3D printed implants for intracavitary brachytherapy
and characterization of the effectiveness of treatment in terms of a coverage metric is
presented by Garg et al. [15]. They used a sampling-based RRT planner to generate
individual, curvature constrained channels. Duan et al. [11] used an optimization-based
method to compute these channel arrangements for individual channels. In contrast, we
consider the problem of generating ribbon-like arrangements of contiguous channels
that is more spatially efficient. Also, both approaches use a stop-and-turn strategy for
modeling the kinematics, which is inconsequential for a single channel but would in-
duce an instantaneous torsional twist in the ribbon. We consider a different kinematic
model of the evolution of the ribbon that explicitly considers torsion to model the twist
along the length of the ribbon. We also combine the benefits of sampling-based and
optimization-based planning methods instead of using them in isolation and show that
a combination of the two methods is important for generating high-quality ribbons.

3 Kinematic Model of the Ribbon

In this section, we define the kinematic model of how a ribbon can be constructed by
sweeping a rigid body corresponding to the cross-section of the ribbon along a contin-
uous, differentiable spatial curve in 3D space. Let pt = [xt ,yt ,zt ]

T ∈ R3 be a 3D point
on the spatial curve parameterized by parameter t. To define the local configuration of
the ribbon cross-section at a given parameter value, we need to define an orthonormal
frame at the given point (Fig. 2). There are infinitely many choices for such a frame
[5]. In this work, we choose the Frenet-Serret frame, the evolution of which can be de-
scribed in terms of the curvature and torsion of the spatial curve, which are quantities
of interest in this work. We note that the following analysis also applies to other choices
such as the Bishop’s frame, also known as the rotation minimizing frame [5, 37].
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Fig. 2. A ribbon is a swept surface traced out by sweeping a rigid body along a spatial curve.
At each point along the curve, the rigid body is oriented according to the Frenet-Serret frame,
where the xt , yt , and zt axes in the local coordinate frame of the rigid body are oriented along
the tangent tt (red), normal nt (green), and binormal bt (blue) vectors of the curve. We consider
the problem of generating such curvature and torsion constrained ribbons through 3D space that
avoid collisions with obstacles in the environment.

The Frenet-Serret frame is oriented so that the xt , yt , and zt axes in the local coordi-
nate frame of the rigid body are oriented along the tangent tt , normal nt , and binormal
bt vectors of the curve. The pose of a rigid body oriented according to the Frenet-Serret
frame at point pt can be written as a 4×4 transformation matrix Xt ∈ SE(3) given by

Xt =

[
Rt pt
0 1

]
=

[
tt nt bt pt
0 0 0 1

]
, (1)

where the 3×3 rotation matrix Rt = [tt |nt |bt ]∈ SO(3) describes the orthonormal frame
in terms of tt , nt , and bt . Informally, the tangent vector encodes the velocity of the
curve, the normal vector encodes the curvature, and the binormal vector encodes the
torsion in the curve.

For a given parameter t, the Frenet-Serret frame evolves according to the following
differential equations of motion [5] [19] as

ṫt = vtκtnt , (2a)
ṅt =−vtκt tt + vtτtbt , (2b)

ḃt =−vtτtnt , (2c)
ṗt = vt tt , (2d)

where vt is the speed of the spatial curve, κt is the curvature, τt is the torsion of the
spatial curve for a given parameter t, and the dot operator indicates the derivative with
respect to the parameter t. These equations of motion can be rewritten in the following
form [32] [

ṫt ṅt ḃt ṗt
0 0 0 0

]
=

[
tt nt bt pt
0 0 0 1

]
0 −vtκt 0 vt

vtκt 0 −vtτt 0
0 vtτt 0 0
0 0 0 0

 . (3)

Using Eqs. (1) and (3), we get the following relation

Ẋt = Xt


0 −vtκt 0 vt

vtκt 0 −vtτt 0
0 vtτt 0 0
0 0 0 0

= XtUt , (4)



where Ut ∈ se(3) is the velocity twist of the rigid body in its local coordinate frame [26]
and is completely described in terms of three parameters vt , κt , and τt . In Sec. 5, we
will use the motion parameters ut = [vt ,κt ,τt ]

T as the basis for generating the desired
curvature and torsion constrained ribbons in 3D space.

By definition, Ut can be decomposed into the instantaneous linear vt and angular wt
velocities in the local coordinate frame of the body as [26]

Ut =


0 −vtκt 0 vt

vtκt 0 −vtτt 0
0 vtτt 0 0
0 0 0 0


=

[
[wt ]× vt

0 0

]
, where wt = [vtτt , 0, vtκt ]

T , vt = [vt , 0, 0]T , (5)

and the notation [·]× stands for a 3× 3 skew-symmetric matrix. Note that the above
kinematic model is subject to nonholonomic constraints.

Informally, this implies that the rigid body only translates along the tangent vector
tt and experiences an instantaneous angular rotation around the tangent tt and binormal
bt vectors. Since the rigid body does not undergo any motion in the direction of the
normal vector nt , the curvature and torsion stay constant at points along nt . Hence, to
generate a curvature and torsion constrained ribbon, it suffices to plan motions of a
rigid body describing the cross-section of the ribbon along a single spatial curve, such
that the cross-section is oriented along the normal vector to the curve. We illustrate this
phenomenon in Fig. 3. If we consider alternate kinematic models where the rigid body
might undergo motion along the normal vector nt , different channels along the ribbon
would have different curvatures, torsional values, and lengths. This makes the planning
problem much harder.
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Fig. 3. Ribbons generated by sweeping a line segment along a circular arc (shown as dashed
line). (Left) The ribbon is oriented along the normal vector n pointing into the page. If the line
segment does not undergo any motion along the normal vector, each channel along the ribbon
has a constant curvature κ , torsion, and length, which equals the curvature, torsion (zero in this
case), and length of the circular arc. (Right) The ribbon lies in the plane of the page. If the line
segment undergoes motion along the normal vector, each channel along the ribbon has different
curvatures, torsional values, and lengths, which makes the planning problem much harder.



When the velocity twist Ut is held constant over time interval of duration δ , the
differential motion model given by Eq. (4) can be explicitly integrated as

Xt+1 = Xt exp(δUt) (6)

where exp : se(3)→ SE(3) is the exponential operator, for which an analytical expres-
sion exists and can be evaluated in closed-form [26].

4 Problem Definition
We consider the problem of generating a set R= {r1, . . . ,rn} of n collision-free ribbons
within an implant that reach candidate dose dwell segments proximal to tumors and are
curvature and torsion constrained (Fig. 1). We are provided the following inputs:

– Description of the 3D external geometry of the implant I as a triangle mesh.
– Description of the geometry of the entry region E at the base of the implant.
– Set of n poses D = {X1, . . . ,Xn} that describe the 3D positions and orientations of

groups of dose dwell segments {d1, . . . ,dn} corresponding to each ribbon.
– Set O of other obstacles (voids or forbidden regions) within the implant.
– Channel width w.
– Maximum limits on speed v̄, instantaneous curvature κ̄ , cumulative curvature κ̄c,

instantaneous torsion τ̄ , and cumulative torsion τ̄c.

For planning purposes, we assume that each ribbon ri, 1≤ i≤ n, is discretized into
a set of T i time steps, each of constant duration δ . From Sec. 3, the local configuration
of the ith ribbon at time step t is specified by the pose X i

t =
[

Ri
t pi

t
0 1

]
of a rigid body

describing the cross-section of the ribbon for 0 ≤ t ≤ T i. We further assume that the
twist U i

t , described in terms of motion parameters ui
t = [vi

t ,κ
i
t ,τ

i
t ]

T (Eq. (5)), remains
constant for the duration of the step t for 0≤ t < T i.

For sake of conciseness, we introduce the notation X i = {X i
t : 0≤ t ≤ T i} to denote

the set of all poses, and U i = {ui
t : 0≤ t < T i} to denote the set of all control inputs for

ribbon ri. The entire ribbon ri can be parameterized as [X i,U i], and can be generated
by integrating the constant twist between subsequent time steps.

The planning objective can be formally stated as: Generate the set R = {r1, . . . ,rn}
of ribbons, such that ∀ ri = [X i,U i], the following constraints are satisfied:

– X i
0 = X i: The initial pose is constrained to be the pose of the ith dose target.

– X i
T i ∈ E: The cross-section of the ribbon at final time step T i lies within the entry

region to permit insertion of catheters.
– X i

t+1 = X i
t exp(δU i

t ): The poses at consecutive time steps are related according to
the kinematics model given by Eq. (6).

– (ri∩ I = /0) ∧ (ri∩O = /0): Ribbon ri does not collide with the implant boundary
I and does not collide with other obstacles O in the environment.

– ri∩ r j = /0, 1≤ j ≤ n, j 6= i: All ribbons are mutually collision-free.
– (|κ i

t | < κ̄) ∧ (|τ i
t | < τ̄) for 0 ≤ t < T i: The instantaneous curvature and torsion

values are within their respective bounds.
– (
∑T i−1

t=0 |δvi
tκ

i
t | < κ̄c) ∧ (

∑T i−1
t=0 |δvi

tτ
i
t | < τ̄c): The cumulative curvature and tor-

sion along the ribbon is respectively constrained.



In addition, for practical applications, it is desirable to minimize the cumulative
curvature and torsion along the length of each ribbon. Formally, given user supplied
weights ακ and ατ , we wish to minimize the following objective for each ribbon ri:

C(U i) = ακ

T i−1∑
t=0

(δvi
tκ

i
t )

2 +ατ

T i−1∑
t=0

(δvi
tτ

i
t )

2, (7)

which is equivalent to minimizing the energy or rotational strain along a curve [25].

5 Approach
In this section, we describe our two stage planning approach. In the first stage, we
use a sampling-based rapidly-exploring random trees (RRT) planner that explores the
free space in the environment to compute feasible candidate ribbons. These candidate
ribbons are then locally optimized using sequential quadratic programming (SQP) to
minimize the cumulative curvature and torsion along the length of each ribbon.

5.1 Rapidly-exploring Random Trees (RRT)

In the first stage, we use a customized sampling-based RRT planner [22] to plan motions
of the rigid body according to the nonholonomic kinematic model descried in Sec. 3.
We sequentially generate a feasible ribbon corresponding to each dwell segment group
di, 1 ≤ i ≤ n in D using the RRT planner. We note that it is also possible to simulta-
neously plan for all the dose segments but in our experiments, we found that doing so
failed to find feasible solutions in the kind of constrained environments considered in
this work. In the second stage, however, we jointly optimize over all ribbons.

Our customized RRT algorithm is summarized in Algorithm 5.1. Starting from each
pose X i, we iteratively grow a tree T in the pose space of 3D positions and orientations
that grows towards the entry region E subject to constraints (Sec. 4). A node is itera-
tively added to the tree as follows. First, a point p ∈ R3 is randomly sampled from the
implant volume such that it does not collide with obstacles O or other ribbons R. We
also bias the sampling towards the entry region to ensure progress [22] As opposed to
directly sampling a pose, this strategy has been shown to work better for nonholonomic
systems such as the ribbon and bevel-tipped steerable needles [29]. Given p, we search
for a node X in the tree that is nearest to p according to a reachability-guided distance
measure, which has been shown to work well in practice [33, 29].

The node X is then expanded as follows. We randomly sample control inputs u =
[v,κ,τ]T in the ranges [0, v̄], [−κ̄, κ̄], and [−τ̄, τ̄], respectively. We select the best set of
controls u that gets closest to p using the Euclidean distance metric [40]. Let X ′ be the
new pose obtained by integrating the controls starting from pose X (Eq. (6)). We then
check if X ′ is feasible, i.e., it does not violate the cumulative curvature κ̄c and torsion τ̄c

constraints. This is easy to check by storing the cumulative curvature and torsion values
at each node in the tree as it is grown. If feasible, we then check if the constant twist
trajectory between X and X ′ does not collide with the implant boundary I, obstacles O,
and the existing set of ribbons R. If collision-free, we add X ′ and the edge from X to X ′

to the tree T . If X ′ lies within the entry region, we stop growing the tree and compute
a plan by traversing the tree T starting backwards from X ′ till the root node is reached.



Algorithm 1 R← ribbon generation(I,E,D,O,w, v̄, κ̄, κ̄c, τ̄, τ̄c)

1: R = /0
2: for all di ∈D do . Process {d1, . . . ,dn} sequentially
3: T ← /0 . Initialize RRT tree
4: T ← add vertex(X i) . Add pose X i as root node
5: repeat
6: p← random point(I,O,R,E) . Sample 3D collision-free point
7: X ← nearest neighbor(p,T ) . Reachability-guided neighbor search
8: u← control sampling(X ,p, v̄, κ̄, τ̄) . Sampling for best control [v,κ,τ]T

9: X ′← integrate twist(X ,u,δ ) . Integrate constant twist using Eq. (6)
10: if feasible(X ′, κ̄c, τ̄c)∧

collision free(X ,X ′, I,O,R) then . Check feasibility
11: T ← add vertex(X ′) . Add pose to tree
12: T ← add edge(X ,X ′) . Add edge to tree
13: end if
14: until (X ′ ∈ E)∨max iterations reached . Repeat till entry region reached
15: ri← build ribbon(T ,X ′,w) . Generate ribbon from X i to X ′

16: R←R∪ ri . Add ribbon to set R
17: end for
18: return R

Given this plan, we generate the entire ribbon ri by integrating the sequence of controls
along each edge of the plan. This ribbon ri is added to the set of existing ribbons R.

It is well known that randomized planners compute sub-optimal or non-smooth
plans [22]. We illustrate this in a scenario with no obstacles in Fig. 4. The RRT planner
computes a feasible solution to the entry region but the solution is clearly sub-optimal,
with unnecessary twists and turns (Fig. 4(a)). We also note that the RRT planner does
not optimize the objective stated in Eq. (7)). As is standard practice, we then further
locally optimize the RRT solution using a local optimization procedure outlined below.
In the scenario with no obstacles, the local optimization improves the RRT initialization
to a straight ribbon with zero curvature and torsion, as is expected (Fig. 4(b)). However,
we note that the nonholonomic kinematic model and planning in the pose space makes
it difficult to employ standard smoothing heuristics suggested in the literature [22].

(a) RRT (b) Local optimization

Fig. 4. No obstacle scenario: Ribbons generated by (a) the RRT planner and (b) the local op-
timization method. The RRT planner uses random sampling of control inputs, which leads to
unnecessary twists and turns in the generated ribbon. The local optimization is able to compute
an optimal ribbon with zero curvature and torsion.



5.2 Local Optimization

In this stage, we simultaneously optimize the cumulative curvature and torsion along
all ribbons in the set R of feasible ribbons generated by the RRT planner. Each ribbon
ri ∈ R is parameterized as a sequence of poses and controls as [X i,U i] and has T i

time steps. We formulate the optimization problem using the objective and constraints
described in Sec. 4 as:

min
X i,U i

1≤i≤n

n∑
i=1

C(U i), subject to constraints. (8)

Objective and constraints: The optimization problem stated above has a quadratic
objective (Eq. (7)), which is well suited for optimization. However, the constraints are
nonlinear. These constraints are converted into the standard equality and inequality con-
straints for optimization as described below:

– Constraints already expressed in standard form: X i
0 = X i, (|κ i

t |< κ̄), and (|τ i
t |< τ̄).

– Non-convex constraints in standard form include: X i
t+1 = X i

t exp(δU i
t ),∑T i−1

t=0 |δvi
tκ

i
t |< κ̄c, and

∑T i−1
t=0 |δvi

tτ
i
t |< τ̄c

– In this work, the entry region E is defined as a convex region. We use a bounding
circle or rectangle depending on the scenario. The constraint X i

T i ∈ E is then formu-
lated as a nonlinear inequality constraint based on whether the ribbon cross-section
at time step T i lies within the bounds of E.

– The collision avoidance constraints (ri ∩ I = /0) and (ri ∩O = /0) are encoded as
nonlinear inequality constraints sd(X i

t ,X
i
t+1, I)> 0 and sd(X i

t ,X
i
t+1,O)> 0, respec-

tively, for 0≤ t < T i,1≤ i≤ n. Here, sd denotes the signed distance. Similarly, the
constraint ri ∩ r j = /0 is encoded as sd(X i

t ,X
i
t+1,X

j
t ,X

j
t+1) > 0 for 1 ≤ j ≤ n, j 6= i.

We refer the reader to Schulman et al. [31] for details on how to efficiently compute
the signed distance between convex objects and linearize such constraints.

Optimization method: We solve this constrained nonlinear optimization problem
via sequential quadratic programming (SQP), where we repeatedly construct a quadratic
program (QP) that locally approximates the original problem around the current solu-
tion. In our formulation, the objective is directly expressed in the quadratic form. How-
ever, the constraints are nonlinear and have to be linearized for inclusion in the QP.
The QP is then solved and we compute a step based on a merit function [27] to ensure
that progress is made on the original problem. To satisfy constraints up to a tolerance,
we use `1 penalties that are progressively increased over the SQP iterations. We refer
the reader to [27] for additional details on the `1-SQP method. This method has been
successfully used for robot motion planning in a variety of contexts [31, 11].

The optimization problem outlined above is, however, described directly over the
set of poses X . Using a global parameterization of the rotation group, such as axis-
angle coordinates or Euler angles, is not suitable for direct optimization [30]. Instead,
we follow the approach of Saccon et al. [30] and Duan et al. [11]. We consider a local
coordinate parameterization of the pose given by the Lie algebra se(3), which is defined
as the tangent vector space at the identity of SE(3). The local neighborhood of a nom-
inal pose X ∈ SE(3) is then defined in terms of the incremental twist x̄ ∈ R6 using the



exp map [26]. We then construct and solve each QP in terms of the increments to the
previous solution. At each SQP iteration, the set of poses X i is updated based on the
incremental twists computed by solving the QP approximation. We refer the reader to
Duan et al. [11] for additional details.

Note on simultaneous versus sequential optimization: Duan et al. [11] propose
a sequential optimization strategy for optimizing the generated channels. A sequential
strategy involves a lesser number of variables and collision avoidance constraints in
the optimization problem. However, in our experiments, we found that the sequential
strategy failed to generate a feasible set of ribbons R because it imposes an ordering
on which ribbons to optimize for. We believe that this is especially true in spatially
constrained environments. The simultaneous optimization strategy, although more ex-
pensive, is able to resolve conflicts by jointly optimizing over all the ribbons.

5.3 Discussion

We consider three planning scenarios to highlight the merits and demerits of the RRT
planner and the local optimization method. In each of these scenarios, we consider
a box-shaped implant volume. The objective is to generate a ribbon from a specified
target configuration to the entry region, which is defined by one of the faces of the box.

In the first scenario, as shown in Fig. 4, we do not consider any obstacles. The
RRT planner generates a ribbon with unnecessary twists and turns as a result of the
randomized nature of the algorithm (Fig. 4(a)). The local optimization method is able
to optimize the ribbon to generate one with zero curvature and torsion (Fig. 4(b)).

In the second scenario, as shown in Fig. 5, we consider two box-shaped obstacles
that block the straight line path from the target configuration to the entry region. If we
use local optimization in isolation with a naı̈ve straight line initialization for the ribbon,
the optimization is unable to resolve collisions with the two obstacles (Fig. 5(b)). The
RRT planner is able to resolve collisions but generates a sub-optimal ribbon (Fig. 5(a)).
However, applying local optimization to the RRT-generated ribbon generates a high
quality ribbon that is able to avoid collisions with obstacles (Fig. 5(c)).

(a) RRT (b) Local optimization (c) RRT + local optimization

Fig. 5. Two walls scenario: Two walls are positioned such that a direct path to the entry region
is blocked. (a) The RRT planner explores the free space to find a sub-optimal ribbon. (b) Local
optimization fails to find a feasible solution starting from an infeasible, straight line initializa-
tion to the entry region. (c) The RRT generated ribbon is provided as initialization to the local
optimization, to generate a ribbon that minimizes curvature and has zero torsion.



(a) RRT (b) RRT + Local optimization

Fig. 6. Narrow passage scenario: The target is oriented so that a feasible ribbon would have to
simultaneously twist and turn and make its way through a narrow passage. (a) Feasible solution
found by the RRT planner. (b) The RRT solution is further locally optimized to minimize cur-
vature and torsion. Without the feasible initialization, the local optimization is unable to find a
feasible solution. The narrow passage is a known problem for sampling-based planners like RRT.
For narrower passages than the one considered here, our approach is unable to find a solution
even though a feasible solution exists for a passage that is just wider than the ribbon width.

In the third scenario, as shown in Fig. 6, we consider two box-shaped obstacles that
only permit passage to the entry region via a narrow passage. The target orientation is
specified such that the ribbon would have to simultaneously twist and turn to be able
to traverse the narrow passage. Narrow passages are a known problem for sampling-
based planners like RRT because it is difficult to generate and connect to collision-free
samples in the narrow passage. This problem becomes especially difficult when the
kinematic model is nonholonomic. The RRT planner is able to resolve collisions after
repeated attempts (8 in our case) to generate a sub-optimal ribbon (Fig. 6(a)). Local
optimization in isolation is unable to find a feasible solution. However, applying local
optimization to the RRT-generated ribbon is able to locally optimize the solution (Fig.
6(b)). However, for passages narrower than the one considered here, our approach is
unable to find a feasible solution even though one exists for passages that are just wider
than the ribbon width. Even though the RRT planner is theoretically probabilistically
complete [22], i.e., it is guaranteed to find a solution if one exists, we cannot guarantee
that this would be true in practice for our application.

6 Designing 3D Implants for Intracavitary Brachytherapy

We consider a scenario where a 3D printed implant is used for treatment of OB/GYN
tumors, as shown in Fig. 7. The implant was modeled as a cylinder of height 7 cm
and radius 2.5 cm, with an attached hemisphere with radius 2.5 cm. The dimensions
of the implant was designed based on dimensions reported by Garg et al. [15]. We
considered 3 tumors that are targeted for intracavitary brachytherapy treatment. We
placed 6 groups of candidate dose dwell segments that are placed proximal to the tumors
within the implant volume and oriented tangentially to maximize dose distribution to
the tumor volumes. The circular entry region is the base of the implant. The objective
is to generate mutually collision-free, curvature and torsion constrained ribbons within
the implant volume that reach the candidate dose dwell segments.

Standard catheters used for brachytherapy are 1.65 mm – 2 mm [10] in diameter. In
this scenario, we consider channels of width w = 2.5 mm. We impose a constraint on



(a) (b)

Fig. 7. We consider an implant volume modeled as a cylinder and attached hemisphere. The
objective is to generate 6 mutually collision-free ribbons that reach groups of candidate dwell
segment groups proximally located and oriented tangentially to the tumors. (a) The RRT planner
is able to sequentially plan for each dwell segment group to generate collision-free ribbons that
have unnecessary twists. (b) The candidate ribbons are jointly optimized locally to minimize the
curvature and torsion along the length of each ribbon.

the instantaneous curvature of κ̄ = 1cm−1 based on the maximum allowable curvature
reported by Garg et al. [15] for radioactive sources that are 1 mm in diameter and 5 mm
in length. We also impose a constraint on the instantaneous torsion of τ̄ = 0.1 radians.
We set maximum limits on the cumulative curvature and torsion for each ribbon as
κ̄c = π

2 and τ̄c = π

2 units, respectively. We also constrain the cross-section of each
ribbon at the respective final time steps to lie within the specified entry region.

We implemented our planning approach in C++ and used the Bullet collision check-
ing library [8] for collision checking queries. Fig. 7(a) shows the candidate ribbons
computed using the RRT planner. The candidate ribbons are mutually collision-free
but contain unnecessary changes in curvature and torsion along the ribbons since the
RRT planner does not optimize the considered objective. Fig. 7(b) shows the results of
jointly optimizing the ribbons using the local optimization approach. In practice, this
optimized arrangement of channels would be printed with support material and later
dissolved to compute the hollow internal channels within the implant volume.

Table 1 summarizes the computation time required to generate these ribbons using
the RRT planner and local optimization as we vary the number of channels per ribbon.
The RRT planner is faster since it generates these ribbons sequentially while the local
optimization jointly optimizes over all ribbons and hence is computationally expensive.
In this scenario, our approach was not able to find a solution for greater than 6 channels
per ribbon due to the limited free space within the implant volume.

Num. channels 1 2 3 4 5 6
RRT time(s) 0.6 1.1 3.5 9.6 16.7 38.4
Opt. time(s) 53.7 81.9 143.5 247.3 313.9 397.1

Table 1. Performance of our planning approach with different number of channels per ribbon.
The cumulative time is the sum of the RRT and optimization times. The reported times for the
RRT planner are averaged over 10 runs. All execution times are based on experiments run on a
single 3.5 GHz Intel i7 processor core.



Fig. 8. Generating individual channels for
groups of candidate dwell dose segments fol-
lowing the approach of Garg et al. [15]. Even
with 3 dwell segments per group (18 chan-
nels in all), the implant volume is occupied
with internal channels. The planner is unable
to generate single channels for greater than 3
channels per group. This leads to less effec-
tive coverage of the tumor volume in terms
of dose distribution and can also compromise
the structural integrity of the implant.

We also compared the use of using ribbon-like arrangements versus generating sin-
gle channels for groups of dose dwell segments. Fig. 8 shows the arrangement of indi-
vidual channels for groups of 3 dwell segments, beyond which the planner is unable to
compute feasible solutions. The use of single channels leads to inefficient utilization of
space within the implant volume, as shown in Fig. 7(b).

The use of single channels also limits the number of reachable dose dwell segments.
This affects the coverage of tumor volume that can receive radiation, thus limiting the
treatment effectiveness. We used the coverage metric proposed by Garg et al. [15] to
compute coverage of the tumor volume using reachable candidate dose dwell segments.
Each dose dwell segment is partitioned into dwell positions for the radioactive source
in intervals of 5 mm, which corresponds to the length of the source. Any point inside
a tumor is then said to be covered if a dwell position lies within a ball of ε radius.
A smaller coverage radius (ε) parameter results in lower dose to healthy organs while
supplying sufficient radiation to the tumor volumes. Hence a higher tumor coverage
with small ε is preferred for brachytherapy treatment.

In this scenario, we found that dwell positions generated with ribbon-like channel
arrangements (Fig. 7(b)) achieved 100% coverage of the tumor volume for ε = 2.1
cm. In contrast, the coverage achieved for single channels (Fig. 8) for ε = 2.1 cm is
only 54%. Achieving 100% coverage is important to prevent cancer recurrence. Using
ribbon-like arrangements allows us to achieve this coverage while minimizing damage
to surrounding healthy tissue. We refer the reader to Garg et al. [15] for additional
details on the coverage metric.

7 Conclusion

In this work, we posed the problem of planning curvature and torsion constrained rib-
bons that avoid collisions with obstacles in 3D environments. We showed that this prob-
lem is equivalent to planning motions for a rigid body along a spatial curve, such that
the rigid body is oriented along the unit normal to the curve defined according to the
Frenet-Serret frame. We used a combination of sampling-based (RRT) planning and
local optimization (SQP) to can compute high quality ribbons for designing channels
within 3D printed implants for intracavitary brachytherapy.

This opens up several avenues for future work. We plan to test our planning ap-
proach to design and print 3D implants and evaluate them in clinical brachytherapy



trials. We plan to extend this work to automatically compute dose dwell segments are
proximally located with respect to the external tumors. We envision that our approach
will also be useful for other applications such as routing ribbon-like arrangements of
colling channels, wires and cables, and planning motions for bevel-tipped steerable nee-
dles and formations of aerial vehicles.
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