
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Efficient Proximity Probing Algorithms for
Metrology

Aviv Adler1, Fatemeh Panahi2, A. Frank van der Stappen3 and Ken Goldberg4

Abstract—Metrology, the theoretical and practical study of
measurement, has applications in automated manufacturing,
inspection, robotics, surveying, and healthcare. The geometric
probing problem considers how to optimally use a probe to
measure geometric properties. In this paper, we consider a
proximity probe which, given a point, returns the distance to
the boundary of the nearest object. When there is an unknown
convex polygon P in the plane, the goal is to minimize the number
of probe measurement needed to exactly determine the shape
and location of P . We present an algorithm with upper bound
of 3.5n + k + 2 probes, where n is the number of vertices and
k ≤ 3 is the number of acute angles of P . The algorithm requires
constant time per probe, and hence O(n) time to determine P .
We also address the related problem where the unknown polygon
is a member of a known finite set Γ and the goal is to efficiently
determine which polygon is present. When m is the size of Γ
and n′ is the maximum number of vertices of any member of Γ,
we present an O(n′m) algorithm with an upper bound of 2n+2
probes.

Note to Practitioners: Abstract—This paper was inspired by
the problem of using a sensor with low-dimensional output, such
as a range sensor, to determine the shape of an object, which is
typically too complex for a single measurement to characterize.
Existing approaches to shape measurement generally use sensors
with high-dimensional output, such as cameras, or use low-
dimensional sensors to measure fixed points, such as with Scan-
ning Probe Microscopy (SPM). It is shown here that by employing
an algorithm that uses the results of previous measurements to
determine how the next measurement is taken, a non-directional
range sensor can be used to efficiently and exactly determine the
shape of a convex polygon. This suggests an alternative approach
to obtaining information on the shape of an object in cases where
low-dimensional sensors are more accurate, faster, or cheaper
than their counterparts.

I. INTRODUCTION

METROLOGY has applications in manufacturing, in-
spection, robotics, surveying, and healthcare ([5], [6]).

An important aspect of metrology is the problem of how to
most efficiently use a given measurement device, or probe, to
determine properties of the environment. When the measure-
ment device and object of interest are geometric, the problem

1Aviv Adler is with the Department of Mathematics, Princeton University,
Princeton NJ, USA

2Fatemeh Panahi is with the Department of Information and Computing
Sciences, Utrecht University, Utrecht, Netherlands. She is supported by the
Netherlands Organization for Scientific Research (NWO)

3A. Frank van der Stappen is with the Department of Information and
Computing Sciences, Utrecht University, Utrecht, Netherlands

4Ken Goldberg is with the Departments of IEOR and EECS, UC Berkeley,
Berkeley CA, USA

This work has been supported in part by by the U.S. National Science Foun-
dation under Award IIS-1227536: Multilateral Manipulation by Human-Robot
Collaborative Systems, and by grants from Google, Cisco, and Flextronics.

Fig. 1. An illustration of Algorithm 1 probing to determine the shape and
location of a polygon with n = 4 vertices and k = 1 acute angle. This
instance is solved with 14 (≤ 3.5n+ k + 2) probes.

of obtaining information about the object through repeated use
of the device is known as geometric probing. One version of
this problem is to deduce the shape of an unknown object
using as few probes as possible.

A number of researchers have developed efficient algorithms
for probing convex polytopes. A pioneering paper, by Cole
and Yap [10], studied probes which travel along a straight
line chosen by the algorithm and stop when they collide with
the polygon (later referred to as finger probes [1], [11], [12],
[13]). Different probe types and algorithms were presented
by Dobkin et al. [12], and generalized to higher-dimensional
cases. These include the finger probes previously studied
by Cole and Yap; hyperplane probes, which consist of a
hyperplane (whose angle is chosen by the algorithm) which
sweeps over the whole space and stops when it collides with
the polygon; and silhouette probes (also called projection
probes [17]), which provide the projection of the polygon onto

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2

a chosen subspace. Other probes which have been studied
for convex polygons include x-ray probes ([1], [11], [16]),
which measure the length of intersection between a chosen line
and the unknown polygon, and half-plane probes [18], which
measure the area of intersection between a chosen half-plane
and the unknown polygon. A related problem, identifying
a convex polygon from a known set, was considered by
Goldberg and Rao in [15] using diameter probes.

Further work on the theme of determining complex geomet-
ric information with multiple relatively simple sensing devices
can also be found in recent work on geometric pursuit-evasion
games [9].

In this paper, we consider proximity probes which, given
a point, return the distance to the boundary of the object in
question, which we assume to be a convex polygon. This is an
expanded and updated version of our conference paper [20],
where we used proximity probes to determine the shape of
an unknown convex polygon. We refer to this as Problem 1
and present Algorithm 1 to solve it, as illustrated in Fig. 1.
This journal paper also includes an algorithm and analysis or
Problem 2: identifying a convex polygon from a known set.

Metrology is used in many automation applications, such as
semiconductor manufacturing and MEMS to inspect the shape
of etched silicon structures ([2], [19]) using scanning probe
microscopy (SPM) ([2], [3], [4]), and virtual metrology (VM)
([7], [8]), which uses measurements of parameters during
the production of wafers to statistically predict production
properties. Proximity probes could also be relevant for sonar
sensors in 2D and 3D (underwater) applications.

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce Problem 1 and the definitions necessary
for the algorithms. In Section III, we present our algorithm
for Problem 1 and analyze its complexity per probe; we also
present a complete example of Algorithm 1 for a simple
polygon P . In Section IV we show an upper bound on the
number of probes needed by Algorithm 1. Section V deals
with Problem 2, presenting and analyzing an algorithm meant
to minimize the number of probes necessary to identify P from
the set Γ. Finally, in Section VI, we summarize our results and
discuss future work.

II. PROBLEM 1: FORMULATION AND PRELIMINARIES

We assume that all points and objects lie in the plane and
that all positioning and measurements are exact.

For any two points or closed sets of points a, b, dist(a, b)
denotes the Euclidean distance between a and b; for a lclosed
subset S of the plane, ∂(S) denotes its boundary, Int(S)
denotes its interior, S̄ denotes the closure of its complement
(so both S and S̄ contain ∂(S)), and Conv(S) denotes its
convex hull. We also define zero-disk to mean a disk containing
only its center.

In addition, for any disk of positive radius C and point z
on its boundary, we define L(C, z) to be the line tangent to C
at z. We also define H(C, z) to be the half-plane bordered by
L(C, z) which contains C, and H̄(C, z) to be the half-plane
bordered by L(C, z) which does not contain C.
A. Problem Formulation

Let P be an unknown convex polygon with n vertices
and edges contained in a known disk D, and let the probing

function fP be defined over the the plane as

fP (x) =

{
dist(x, P) : x 6∈ Int(P)
−1 : x ∈ Int(P)

The probing algorithm is not explicitly given this function,
but is allowed to call it as many times as necessary to find P
exactly; the goal of this paper is to find an algorithm which
minimizes the upper bound of probes necessary (and allows
the next probe to be efficiently computed at each step). The
points x for which it calls the function fP are the probes,
and the disks of radius fP (x) centered at these points are the
probe disks, abbreviated as p-disks (by convention, if fP (x) =
−1 then no disk is produced). Every p-disk is by definition
incident to P at exactly one point.

B. Condensed Probe Disks

Suppose we have two (distinct) p-disks Ca, Cb such that
Ca ⊂ Cb. Since they both must be incident to P at exactly one
point, they must be incident to P at the same point (otherwise
it is impossible for one to contain the other); this point will
by definition be the only point in ∂(Ca) ∩ ∂(Cb), which we
call pa,b. Furthermore, P must be interior disjoint with the
half-plane H(Cb, pa,b) since P is convex, pa,b ∈ Cb, P , and
Cb is not a zero-disk (because ∅ 6= Ca ⊂ Cb). We thus define
the condense operation on Ca, Cb which outputs pa,b as a
zero-disk and associates with it the half-plane H(Cb, pa,b); the
products of this operation are called condensed probe disks
(abbreviated as cp-disks). Furthermore, any p-disks which
neither contain nor are contained by other p-disks (and so
cannot be used by the condense operation) are also considered
to be cp-disks. Note that cp-disks, like p-disks, must have
exactly one intersection point with P (since cp-disks are either
p-disks or zero-disks produced by the condense operation). If
C∗ is a cp-disk produced by the condense operation (and hence
C∗ is a point), we let H(C∗) be its associated half-plane and
L(C∗) be the line bordering H(C∗).

A small note: it is possible for a p-disk Ca to be contained
in several other p-disks, none of which are contained in each
other; however, this can only happen when Ca is a zero-disk
and also at a vertex of P . In these cases, Ca will be condensed
with every disk containing it to produce multiple condensed
cp-disks.

C. Clockwise Ordering of cp-Disks

For any cp-disk C∗, let p(C∗) be its intersection point with
P . We note that by imposing a clockwise direction on the
boundary of P , we can impose a clockwise order on the set
of p(C∗) for all cp-disks C∗ (it is possible for two cp-disks to
have the same contact point on P ; but this can only happen on
vertices of P). This then imposes a clockwise (cyclic) ordering
on the set of cp-disks, where if multiple cp-disks happen to
have the same contact point with P , they can be ordered by
the lines tangent to them at the common contact point (a zero-
disk C∗zero produced by the condense operation is considered
to have the line L(C∗zero) as its tangent; a zero-radius cp-
disk not produced by the condense operation cannot share a
contact point with another p-disk or cp-disk since it would be
contained by the other disk and hence not be a cp-disk by
definition).

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

Fig. 2. An example of three consecutive cp-disks, which shows the shadow
sets of C∗i−1, C∗i+1 with respect to C∗i and the neighbor-shadow set of C∗i .

From now on we will attach indices to the cp-disks indicat-
ing their order. Specifically, we will let X be the ordered set of
cp-disks, and implicitly label the disks in X as C∗1 , C

∗
2 , ..., C

∗
α.

Since the ordering of cp-disks is cyclic, we assume that
additions and subtractions on indices are performed modulo
the number of disks.

Remark: It should be noted that in general, given an
arbitrarily probed set of cp-disks, prior knowledge of P is
necessary to deduce their exact ordering by the above criteria,
and thus the ordering cannot be used by the algorithm.
However, we will show that our algorithm chooses probes in
such a way that this labeling can always be determined exactly
without any prior knowledge of P .

D. Shadow Sets

Suppose we have two cp-disks C∗i , C
∗
j ; for both we define

a counterclockwise direction on their boundary. We define the
lines Li,j and L′i,j to be the lines tangent to both C∗i and C∗j
such that
• for both lines, C∗i and C∗j lie on the same side
• Li,j is given a direction coinciding with the counterclock-

wise direction imposed on the two cp-disks, while L′i,j is
given a direction opposing the counterclockwise direction

• Both lines, in their given directions, intersect C∗i before
C∗j .

Note that Li,j is the same line as L′j,i but with the opposite
direction imposed on it.

We now define the rays li,j , l′i,j to be the rays respectively
lying on Li,j , L

′
i,j with their sources at the respective points

of tangency with C∗j . For a ray l, we define Hright(l) to be
the quarter plane lying directly to the right of the ray, and
Hleft(l) is analogously defined.

We then define the shadow set cast by C∗j on C∗i as

Si(j) = C∗j ∪ (Hleft(li,j) ∩Hright(l
′
i,j))

This set cannot contain any point of Int(P), since P cannot
have any point in Int(C∗j), must be incident to C∗i , and is
convex; similarly, P cannot contain any point of Int(Si(j)).
Fig. 2 illustrates shadow sets for three consecutive cp-disks.

Note that the boundary of C∗j is partly on the boundary of
Si(j) and partly in its interior; since P cannot contain any
point of Int(Si(j)), its point of intersection with C∗j must be
on the part of ∂(C∗j) which is also on ∂(Si(j)). We call this
the feasible arc C∗i imposes on C∗j and denote it ζi(j).

E. The Neighbor-Infeasible Region

We first define the set Si−1(i)∪Si+1(i) to be the neighbor-
shadow set of C∗i (abbreviated as ns-set), denoted as S(i) for
convenience (Fig. 2). Similarly, we define the set ζi−1(i) ∩
ζi+1(i) to be the neighbor-feasible arc of C∗i , abbreviated as
nf-arc; we denote it as ζ(i) for convenience.

For cp-disks produced by the condense operation, we in-
stead use S(i) to refer to the half-plane H(C∗i). Note that
since no cp-disk can be contained in Int(H(C∗i)), H(C∗i) is
a superset of Si−1(i) ∪ Si+1(i) for these cp-disks.

The neighbor-infeasible region R can now be defined as

R =

m⋃
i=1

S(i) ∪ D̄

Intuitively, for each C∗i , we simply take the ns-set of C∗i ,
the half-planes associated with all cp-disks generated by the
condense function, and the complement of D (the disk which
we were initially given as containing P). Since R is composed
of these pieces, P must be entirely contained in (the closure
of) the complement of R.

We will show later that our algorithm behaves in such a
way that the complement of R (the neighbor-feasible region)
is a single connected piece; we therefore will assume it to be
the case now. The boundary of R will then be naturally split
into the following two basic types of pieces, which we call
sections:

1) arcs of the boundary of D
2) connected subsets of the boundaries of the sets S(i); we

denote ∂(S(i)) ∩ ∂(R) as ∂R(S(i))

Note that the second type of section has two possibilities:
a) if C∗i was not produced through the condense operation,

∂R(S(i)) is naturally split into at most three pieces, namely
• the nf-arc ζ(i)
• a segment of the ray li−1(i) (which we will denote l(i)

for convenience)
• a segment of the ray l′i+1(i) (which we will denote l′(i)

for convenience)
The other two pieces of the boundary of S(i), namely

l′i−1(i) and li+1(i) cannot lie on ∂(R) = ∂(R̄) because P
in that case would impose the wrong ordering of the cp-disks.

b) if C∗i was produced through the condense operation,
∂R(S(i)) is just L(C∗i)

Remark: Although the neighbor-infeasible set R is interior
disjoint with P by definition, it is not necessarily the case that
it is the full set of all infeasible points, i.e. the points which,
given the p-disks, can’t be contained in P .

F. Confirmation of Vertices and Edges, and the Query Set

We say a point v is confirmed if by considering X it can
be shown that v is a vertex of P , and we say a line L is
confirmed if by considering X it can be shown that l contains
an edge of P ; an edge e of P is also referred to as confirmed
if the line extending it is confirmed. Any vertices or edges of
P which are not confirmed are called unconfirmed. The list
of confirmed vertices is denoted Vc and the list of confirmed
edges is denoted Ec.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

Now we consider ∂(R), as described above as a collection
of pieces of the boundaries of the S(i) and D. Since ∂(R)
is continuous, there will be points which lie on more than
one of the specified sections. Some of these points will lie on
confirmed vertices or edges of P . The ones which do not will
be called the query set Q, from which we will always probe
(except for the very first probe). Furthermore, we define the
preferred query set Q∗ to be the subset of Q which does not
contain any intersection points between two p-disks.

To confirm a vertex or line, we need to count how many p-
disks are incident to it; an easy way to compute this from the
set of cp-disks is to count the number of cp-disks tangent to
L, double-counting those produced by the condense operation
(since they correspond to two p-disks). Note that this means
the number of cp-disks involved is at most the number of p-
disks involved.

Furthermore, note that the set of all cp-disks passing through
a point or tangent to a line must be consecutive.

We can confirm a point v as a vertex of P in these cases:
• if 3 p-disks pass through v
• if v is probed and fP (v) = 0 (this implies that v ∈ ∂(P);

the fact that v was in Q, which is a necessary condition
for being probed by the algorithm, means that v sits in a
corner of R and thus cannot be in the middle of an edge
of P , meaning it must be a vertex of P)

• if a segment of (confirmed or unconfirmed) line L on
∂(R) and two p-disks touch v

• if segments of (confirmed or unconfirmed) lines L,L′ on
∂(R) and one p-disk touch v

If we confirm a vertex on a previously unconfirmed line,
we can automatically confirm the line as well.

Additionally, we can confirm a line L as containing an
edge of P if L is tangent to three p-disks. The cp-disks
representing these three p-disks will necessarily be consecutive
in X because they all have contact points with P on the same
edge (and no other cp-disks will have contact points in the
interior of this edge, since in that case L would have been
confirmed earlier), and so given a cp-disk C∗i we just need to
check the three consecutive triples containing it.

In addition, if line L is tangent to two p-disks and passes
through the intersection point v of the boundaries of two other
p-disks, then both L and v can be confirmed. Also, if L is
tangent to a p-disk and goes through the intersections of the
boundaries of two different pairs of p-disks (call these points
v1, v2), we can confirm v1, v2 and L.

Whenever a vertex v is confirmed, it automatically implies
that probing v would return fP (v) = 0; this means we can
place a p-disk there without explicitly probing it, and perform
the condense operation with any existing p-disks which happen
to contain v. Since they all have the same contact point v with
P , they will be consecutive in X , and later on we will show
that there cannot be more than 3 such disks for any v, so this
process takes constant time.

Similarly, whenever a line L is confirmed, we always have
at least one, and often more than one, cp-disks tangent to
L; at each tangent point x we know that fP (x) = 0 so
we may place a p-disk there without actually executing the
probe function, and perform the condense operation with the

original tangent p-disk to create a new cp-disk. Since an edge
is always confirmed if it is incident to 3 cp-disks, the number
of condense operations we need to perform is at most 3 for
each confirmed line; thus this process takes constant time.

Remark: Thanks to the fact that we use the condense
operation when we confirm vertices and edges (without re-
quiring new probes), the lines corresponding to these condense
operations are automatically incorporated into ∂(R).

III. ALGORITHM 1

We now present an efficient algorithm for solving the prob-
ing problem described in Section II. The algorithm maintains
the circular ordered list X of cp-disks, sorted in clockwise
order of their intersection point with P around ∂(P), an
algebraic representation of the neighbor-infeasible region R,
lists of the confirmed vertices (Vc) and edges (Ec) of P ,
and representations of the query set Q and preferred query
set Q∗. We present it in two parts: the first dealing with
how to generate the next probe given X , R, Vc, Ec, Q, and
Q∗, and the second dealing with how to update these objects
given a new probe result. The algorithm terminates once (a)
at least one vertex and edge have been confirmed and (b)
every confirmed vertex is on two confirmed lines and every
confirmed line contains two confirmed vertices.

In addition, a some extra information and pointers will be
stored in these lists in order to allow the algorithm to execute
all the steps in constant time, most notably pointers in Q for
each element which point to its neighbors (in both X and Q);
however, we omit the exact details.
A. Algorithm for Generating New Probes

The algorithm for generating new probes is divided into
two distinct phases (preceded by a one-probe initialization):
in Phase 1, we probe arbitrarily from the preferred query set
Q∗ when possible; when it is not, we choose instead from Q
(both Q∗ and Q are by definition a subset of the boundary of
R) until some edge is confirmed; in Phase 2 (once an edge is
confirmed), we probe points designed to confirm the vertices
and edges of P in (roughly) clockwise order.

We also add the following definitions for reference in the
algorithm:
• the first edge of P to be confirmed is denoted e1 (i.e. the

edge contained by the first line confirmed)
• the edges and vertices of P in clockwise order are
e1, v1, e2, v2, ..., en, vn

• for any edge ei, we let L∗i be the line containing ei; note
that it is the lines, not the edges themselves, which are
directly confirmed by the algorithm

• at any given step of the algorithm, we let t be the largest
index such that e1, v1, e2, v2, ..., et−1 are all confirmed
(we can determine t from Ec and Vc without any extra
direct knowledge of P)

• l is a ray originating on some point on et−1 which we
know is in P (for all t > 2, we use vt−2; otherwise we
use the contact point of some p-disk with the confirmed
line containing et−1) and extending et−1 in the direc-
tion coinciding with the clockwise direction around the
boundary of P (this direction is also determinable from
Ec and X without any extra knowledge of P)

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

• for any set S and ray γ, let ρ(γ, S) be the furthest point
along γ which is also in S

At the start, X,Vc, Ec, Q,Q∗ are empty and R = D̄, so
we simply probe from an arbitrary point on the boundary of
D. Because P ⊂ Int(D), this disk will have positive radius;
because it is the first p-disk, it cannot be condensed and is
thus also a cp-disk. In addition, it will not have any neighbors
in X since it is the only disk in X , so its shadow set is by
convention defined to be itself. Thus, R is simply the union
of this disk and the complement of D, and the boundary of R
will consist of an arc of this disk plus an arc of D. Hence, by
definition, Q consists of the two points of intersection between
the boundaries of D and the first cp-disk.

Algorithm Steps:

1) While no line has been confirmed, at each step we check
if Q∗ has at least one element. If it does, we choose an
arbitrary point x ∈ Q∗ and probe it; if not, we choose
an arbitrary point x ∈ Q and probe it.

2) Once a line has been confirmed, we let the edges and
vertices of P , the index t, and the ray l be defined
as above. We repeat the following step until both et
and vt−1 are confirmed (at which point, by definition,
the index t increases, and we start Phase 2 again; we
terminate once vt is confirmed on e1).
Let x = ρ(l, R̄); an intuitive idea of x is that it is the
furthest clockwise point on the confirmed line containing
et−1 which is not in the neighbor-infeasible region R.
We note then that since x is the furthest point on
l ⊂ L∗t−1, it must also be on some other object on the
boundary of R; hence, either x ∈ Vc (if x happens to
be vt−1 and is already confirmed) or x ∈ Q.
If x ∈ Q then it must be both on L∗t−1 and some other
piece of the boundary of R. In particular, it can be on
the following
• an nf-arc ζ(i) of some
• another confirmed line
• an unconfirmed line, either corresponding to the

output of a condense function or incident to two
(consecutive) cp-disks

• the boundary of D
We then do the following:

a) if x ∈ Vc, call Next Edge
b) if x ∈ Q and x 6∈ ζ(i) for all i, probe x
c) if x ∈ Q and x ∈ ζ(i) for some i, then it is one

endpoint of the arc ζ(i)∩∂(R); let x′ be the other
endpoint. This point by definition will either be x’s
neighbor in Q or will be an endpoint of ζ(i), and
hence is retrievable in constant time

Remark: Although in Phase 1 we are allowed to probe any
x ∈ Q∗ (or, if Q∗ is empty, any z ∈ Q) at each step, if we wish
to minimize the time complexity of choosing the next probe
at each step, we need a retrieval method which produces a
member of Q∗ or Q in constant time; having either a stack or
a queue as an additional data structure for Q∗ and Q are the
most natural ways of achieving this.

The Next Edge Procedure

This procedure is called when et−1 and vt−1 are both
confirmed but et is not confirmed. Let us consider the set
of cp-disks incident to vt−1; they will be consecutive in X ,
and will have been produced by the condense function (at
the moment that vt−1 was confirmed). Let C∗i be the last cp-
disk among them; let NQ(C∗i) be C∗i ’s next neighbor (in the
clockwise direction) in Q. We then probe NQ(C∗i) (updating
the maintained information as we go so i and NQ(C∗i) can
change after each probe) until the next edge is confirmed, at
which point t can be updated and we return to the main loop
of Phase 2. We note that NQ(C∗i) is actually the point on
L(C∗i) furthest from vt−1.

The Pseudocode
For the pseudocode, we introduce some extra notation and

functions (and show, where necessary, that these functions can
be computed efficiently). We define the sets E∗c , V

∗
c to be

respectively the subset of Ec consisting of those lines which do
not contain two points from Vc, and the subset of Vc consisting
of those points which are not contained by two lines from
Ec. Intuitively, E∗c and V ∗c consist of the confirmed lines and
vertices whose adjacent vertices and lines, respectively, have
not been confirmed yet. These sets are easy to maintain with
flags attached to both Ec and Vc.

For the case (c) of Phase 2, if x ∈ ζ(i), then we denote the
other endpoint of the arc ζ(i) ∩ ∂(R) as q(x).

For any x ∈ Q, we note that since we can retrieve its
neighbors in X in constant time, we can determine whether
it is on some nf-arc in constant time; we will treat this as a
binary valued funtion nf(x) which is true when x is on some
nf-arc, and false otherwise.

The RandomElement function refers to random or arbitrary
choice of some element from a set; the Probe function refers
to the full update algorithm (described in Section IIIB), which
uses and modifies all the objects in the program. Most object
updates occur within the Probe function.

Note that by the time Phase 2 starts, by definition, we will
have at least one member of Ec; note also that maintaining
Q∗ is only necessary for Phase 1.

B. Algorithm for Handling a New Probe

The algorithm for updating the maintained information (X ,
R, Ec, Vc, Q, Q∗) is relatively simple since we usually probe
from the set Q (since Q∗ ⊂ Q). To update X in this case,
we merely note that each point x ∈ Q is specifically linked to
two consecutive ‘neighbors’ in X .

If the new p-disk contains or is contained by one or both of
the ’neighbor’ cp-disks of its center, we perform the condense
operation; this check trivially takes constant time since it has
only two neighbors. It cannot contain or be contained by
any non-neighboring cp-disks, and therefore checking whether
the condense operation has to be used has constant time
complexity per step.

The only case where we do not probe from Q is in Phase
2, when line L∗t−1 containing edge et−1 is meets ζ(i) (by
definition at an endpoint of ζ(i) ∩ ∂(R)) and, in addition,
the other endpoint of ζ(i) ∩ ∂(R) is not in Q. Even if we
cannot determine it from our observations alone, our original
definition of the ordering (depending on P) is still valid;

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 6

Algorithm 1 Identifying P using proximity probes
1: procedure DETERMINEP(D)
2: Vc, Ec ← null . Initialization
3: ∂(R)← ∂(D)
4: x← RandomElement(∂(D))
5: run Probe(x)
6: while Ec = null do . Phase 1
7: if Q∗ 6= null then
8: x← RandomElement(Q∗)
9: else

10: x← RandomElement(Q)
11: run Probe(x)
12: while E∗c 6= null and V ∗c 6= null . Phase 2
13: x← ρ(L,R)
14: if x ∈ Vc then . Case a:
15: run NextEdge(x) . x = vt−1
16: else if nf(x) = false then . Case b:
17: run Probe(x) . x is not on an nf-arc
18: else . Case c:
19: x′ ← q(x) . x is on an nf-arc
20: run Probe(x′)
21: return Vc . Return P as a set of vertices
22: end procedure

23: procedure NEXTEDGE(x)
24: while ¬∃e ∈ (Ec\et−1)|x ∈ e
25: x′ ← NQ(C∗i)
26: run Probe(x′)
27: end procedure

because the new disk has its center on the neighbor-feasible
arc of C∗i , it must be a neighbor of C∗i . Furthermore, since
it is the other (further clockwise around the boundary of R̄)
endpoint of ζ(i)∩ ∂(R), the remaining set of points at which
C∗i can be incident to P , which is a subset of ζ(i) ∩ ∂(R),
is counterclockwise from all points of the new disk (around
the boundary of R̄). Hence, the new disk cannot be between
C∗i−1, C

∗
i and can be inserted between C∗i , C

∗
i+1.

The remainder of the updates involve updating Vc and Ec,
and in turn updating Q to not include confirmed vertices or
edges; as any vertex or line is automatically confirmed when
three p-disks are tangent to it, and thus these checks remain
in constant time. Updating the relevant stored information
is constant for each element of R,Q,Q∗, Vc, Ec and X we
update, and for each set only a bounded number of elements
(the neighbors of the probed point) are updated, so the total
updating time has complexity O(1) per probe.

C. Example

These concepts are shown in Fig 1. The vertices of the
polygon are labeled in clockwise order, with v1 being the
acute angle vertex; the edges are labeled in clockwise order
as specified previously. The main features are represented
as follows: cp-disks are shown by black circles, and p-disks
which have been condensed are shown by dashed white circles;
the infeasible region R is shown in gray; and Q is shown by
large dots. In Phase 1 of the algorithm, Q∗ is denoted by

empty dots; in Phase 2, the next probe chosen is denoted by
an empty dot.

The panels show: (a) P and D before any probes; (b) the
initial probe x0 on the boundary of D and x1 is one of the
intersection points of the disk resulting from probing x0 and
∂(D); (c) illustration of all but one of the probes chosen during
Phase 1 of the algorithm; (d) after 7 probes the edge e1 of P
is confirmed by the algorithm, and the disks incident to it are
condensed; (e) in Phase 2, case (c) of the algorithm occurs,
resulting in a probe at x7. This confirms v1, and therefore
we condense the disks which are incident to it (centered at
x2 and x7); (f) after 14 probes, all the edges and vertices are
confirmed, and so P has been determined.

IV. COMPLEXITY BOUNDS ON ALGORITHM 1

We first establish the following notation. Let v be a vertex
of P ; we then write 6 P (v) to refer to the angle of P at v. If
v is confirmed, we note that this means the algorithm would
have condensed the disks incident to v, so that R̄ would have
an angle at v; we write 6 R(v) to refer to this angle.

Note that 6 P (v) is always contained in 6 R(v) and that
6 R(v) never increases as the algorithm goes on.

A. Preliminary Lemmas

Lemma IV.1. Assume that v is the intersection point on ∂(R)
of the boundaries of two p-disks Ci and Cj , neither of which
contains the other. If we probe from x ∈ R̄ such that x 6= v,
the resulting p-disk C cannot pass through v unless 6 P (v) is
acute. If 6 P (v) is acute and C passes through v, then 6 R(v)
becomes acute.

Proof. We first note that if either Ci or Cj is a zero-disk, the
other would contain it, violating the givens of the lemma.

Assume that the new p-disk C resulting from probing x ∈ R̄
(x 6= v) passes through v; since Ci, Cj , C all pass through
v ∈ ∂(R), it must be a vertex of P . Let l be the ray with
source at v, tangent to Ci and pointing into Cj ; let l′ similarly
be the ray with source at v tangent to Ci and pointing into
Cj . The convex hull of these two rays is then a cone, and is
entirely contained within the interior of the infeasible region
R (with the exception of v itself). Since x ∈ (̄R), x 6∈ Int(R),
and x 6= v, we know that x is not in this cone.

We note that since the cone can be seen as the intersection
of two half-planes (whose boundaries are the line extensions of
the two rays), its complement can be seen as the union of the
two complements of these half-planes (which are themselves
half-planes). Therefore, since x is in the complement, it must
be in at least one of the half-planes; suppose without loss of
generality it is in the half-plane whose border is the extension
(denoted L) of l. However, let us now consider the line
L(C, v); this line will form an acute angle with L, and will
be the line bounding the condensation of C with the zero-disk
we place at v when it is confirmed. Thus, P must be between
L and L(C, v), which means that since the angle (which will
be the new 6 R(v)) of these two lines at v is acute, 6 P (v)
must be acute as well.

Lemma IV.2. Let v be a confirmed vertex of P , and let x ∈ R̄
be the next probed point which produces a disk C (Fig. 3).
Note that v is already confirmed, so x 6= v since we don’t

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 7

Fig. 3. If v is a confirmed vertex and the disk resulting from x ∈ R is
tangent to v, then 6 P (v) is acute while 6 R(v) is not acute.

probe confirmed vertices. Then C can be incident to v only if
6 P (v) is acute, 6 R(v) is not acute; furthermore, afterwards,
6 R(v) will be acute (so no new p-disk can be incident to v).

Proof. Suppose C is incident to v. The proof that 6 P (v) is
essentially the same as the proof for IV.1; therefore we must
show that this can only happen when 6 R(v) is not acute.

Suppose to the contrary that 6 R(v) is acute. Then x ∈ R̄,
which is contained in 6 R(v), C is centered within the cone
corresponding to 6 R(v), which is acute. But that means that
the complement of H(C, v), which must contain P , has v as its
only intersection with the cone corresponding to 6 R(v). Thus,
P ⊂ R̄∩H̄(C, v) = v, which is obviously a contradiction.

Corollary IV.3. Let v be a vertex of P such that when v is
confirmed, it is not by being probed directly. Then,
• if 6 P (v) is not acute, when the algorithm finishes the

number of p-disks incident to it is at most 2
• if 6 P (v) is acute, when the algorithm finishes the number

of p-disks incident to it as at most 3

This corollary follows directly from the preceding lemma.

Lemma IV.4. Let e be a confirmed edge and v be one of
its endpoints. Let x ∈ R̄ such that x doesn’t lie on the line
extending e. If we probe from x, the resulting disk cannot be
incident to v unless v is an acute angle vertex of P .

Proof. Since e is a confirmed edge, one of the half-planes
bordered by the line extending e must contain R; therefore,
since x ∈ R̄, x cannot lie in the other half-plane bordered
by e. Assume the p-disk created by probing x, denoted by
C, is incident to v. The new feasible region created by v is
a region lies the angle between e and L(C, v), which is an
acute angle.

We note that as long as we only probe from points in ∂(R)
which are not confirmed vertices or in the interior of any line
segment on ∂(R) contained by a confirmed line, we will never
create a p-disk which will be incident to the interior of any
previously confirmed edge.

B. Undesirable Confirmations

The bounds derived in the previous section are only violated
(by 1) if v is confirmed while incident to three p-disks, one
of which is the zero-disk centered at v itself (this applies
regardless of whether 6 P (v) is acute). However, we note that
if one of the two non-zero p-disks is also tangent to one of

Fig. 4. The ray l′ with source at v and tangent to C′ cannot be tangent to
C′ inside of C, where C′ is a disk centered at an arbitrary point lying on
∂(C) and between y and z.

the edges of P adjacent to v, we may associate it with that
edge instead (so that the bound is not considered violated), and
hence need only worry about the possibility that neither of the
non-zero p-disks are tangent to an adjacent edge. We call such
cases undesirable confirmations, as each occurrence increases
our bound on the number of probes needed to confirm P .

We now present two geometric lemmas which are necessary
for our bound on the number of undesirable confirmations; we
omit the proofs here, but interested readers can find the full
arguments in our technical report [21].

Lemma IV.5. Let C be a disk centered at x and v be a point.
Let lx be the ray with source at v and passing through x. Let
y be the first intersection point of L and ∂(C). In addition,
let l be the ray with source at v and tangent to C lying to
the left of lx, and let z be the point where l is tangent to C.
Finally, let x′ be any point on the arc of ∂(C), and C ′ be
a disk centered at x′. Then the ray l′ with source at v and
tangent to C ′ (such that C ′ is to the right of l′, as in Fig. 4)
is tangent to C ′ outside C.

Lemma IV.6. In Phase 2 of Algorithm 1, if at any step our
probe was from case (b) (where the ray l intersects some other
straight-line piece L of the boundary of R), where the angle
between L and l is is not acute, and the probe does not confirm
a vertex, our next probe will also be of case (b), and also with
a non-acute angle.

We note that an easy corollary of this lemma is that if
case (b) occurs at a non-acute angle, it will continue until
a new vertex is confirmed; since undesirable confirmations by
definition cannot happen in case (b), the next confirmed vertex
cannot be undesirable. We may now use this to present a bound
on the number of undesirable confirmations.

Lemma IV.7. At most one undesirable confirmation occurs
during Phase 1.

Proof. First, since we only probe from Q during Phase 1,
any probe which returns a zero-disk must confirm a vertex,
as no point in Q can correspond to the interior of an edge
of P . In this case, by definition, an undesirable confirmation
occurs if and only if we probe from a point x which is
in the intersection of two p-disks and receive fP (x) = 0;
therefore, by definition, if we probe from Q∗ we will not get
an undesirable confirmation.

Suppose that we have one undesirable confirmation so far,

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

Fig. 5. v is the vertex identified by an undesirable confirmation and C∗i is
the p-disk generated by the subsequent probe. (a) Any probe which falls on l
before the next undesirable confirmation of a vertex must be the intersection
of l and a line on ∂(R) where the angle at the intersection is not acute, and
must be the result of case (b) of Algorithm 1. (b) Any probe after xi which
is the last probe lying on l falls on the intersection of ζi and a tangent line.

for vertex v of P , and suppose we are still in Phase 1;
therefore, Ec is empty. In particular, this means that segments
of the lines produced by the condense operation on disks
incident to v are on the boundary of R. Given one of these
segments, we see that one endpoint will be v and the other
endpoint cannot be a confirmed vertex (since otherwise we
could confirm the line and go to Phase 2); furthermore,
the other endpoint cannot be incident to two p-disks either
since we would still be able to confirm the line in question.
Therefore, the other endpoint will be in Q∗, so Q∗ will not be
empty. Therefore, once one undesirable confirmation occurs
in Phase 1, there cannot be another until Phase 2 begins.

Lemma IV.8. Let m be the number of undesirable confir-
mations which occur over the course of the algorithm. Then
m ≤ n/2 + 1.

Proof. We first wish to show that in Phase 2 only every other
confirmed vertex can be an undesirable case. More specifically,
we assume v is confirmed by an undesirable confirmation,
and show that the next vertex to be confirmed cannot be an
undesirable confirmation. We let l and et be defined as in the
algorithm. We also assume to the contrary that the next vertex
confirmation after v is undesirable.

Since v is an undesirable confirmation, it must have been
confirmed in case (c), where the endpoint of l on the boundary
of R falls on the intersection of the boundaries of two cp-disks.
When v is confirmed, these two cp-disks are condensed, and
the next probe must be of case (b), at the intersection between
l and one of the lines L produced through v by the condense
operation. We let this intersection be xi and the resulting cp-
disk be C∗i (Fig. 5).

If any probe afterwards (before the confirmation of the
next vertex, which we have assumed to be undesirable) falls
on l, it cannot be of case (c) and cannot be the assumed
undesirable next confirmation; therefore, it was generated by
case (b), as the intersection of l and a line on ∂(R) tangent
to C∗i . However, since the center of C∗i is on l, the angle
at this intersection cannot be acute (Fig. 5(a)), and therefore
by Lemma IV.6, the next confirmed vertex cannot be an
undesirable case, thus producing a contradiction.

Therefore, we may assume that xi is the last probe to fall

on l before the next vertex is confirmed; thus, every probe
between xi and the next confirmation is of case (c) (since an
occurrence of case (a) would require the next confirmation
to happen first, and case (b) by definition always falls on l).
It is clear by a simple inductive argument that every probe
between xi and the new undesirably-confirmed vertex falls on
the boundary of C∗i : in case (c), the next probed point will
be on the other endpoint of the nf-arc ζ(i). If the resulting
p-disk intersects l outside of C∗i , then we have a contradiction
as C∗i can immediately be shown to be disjoint with P , which
by definition is not possible, so C∗i must remain the cp-disk l
intersects; but then, since we have assumed that every probe
until the next vertex confirmation is of case (c), it must remain
on the boundary of C∗i until the next vertex is confirmed.

We now note that each new probe which does not confirm
a new vertex decreases ζ(i). We note as well that because xi
is located where one of the lines associated with v (when it
is confirmed) intersects l, ζ(i) by definition is initially the arc
between l and the line joining v and xi (Fig. 5(b)); we let this
arc of C∗i be called ζ∗.

We now consider the probe immediately preceding the probe
which results in the undesirable confirmation. By the above,
this must occur on ζ∗; but then by Lemma IV.5, after this probe
neither of ζ(i)’s endpoints are intersections of the boundaries
of two cp-disks. But this immediately implies that the next
probe, which is at an endpoint of ζ(i), cannot be an undesir-
able confirmation. Hence, since none of these probes can be
an undesirable confirmation, the next vertex confirmation will
not be undesirable, contradicting our assumption that it is.

Thus, we have proved that in Phase 2, whenever an unde-
sirable confirmation occurs, the next vertex to be confirmed
cannot be an undesirable confirmation. Since we have already
proved that in Phase 1 there can be at most one undesirable
confirmation, there are in total at most n/2 + 1.

C. Bounding the Number of Probes Used

We now wish to find an upper bound for the number of
probes used by Algorithm 1; this is achieved by analyzing
the number of p-disks that can be incident to any edge or
vertex of P when it is confirmed. We now assume that no
undesirable confirmation occurs; we will then note that since
each undesirable confirmation adds at most one probe, and by
Lemma IV.8 there are at most n/2 + 1, we can add this to the
bound we derived to obtain the true bound.

At any given step in the algorithm, let φ(e) and φ(v) denote
the number of p-disks incident to unconfirmed edge e and
unconfirmed vertex v respectively; and let ω(e) and ω(v)
denote the number of p-disks which are incident to confirmed
edge e and confirmed vertex v, respectively.

We first consider the number of p-disks any object can have
adjacent to it at the moment it is first confirmed; by convention,
if a p-disk is incident to both some confirmed vertex and
some confirmed line, we associate it with the vertex only. We
perform this analysis on the two basic phases of the algorithm.

For Phase 1 (i.e. confirming the first edge), there are two
possible cases for the number of probes which will suffice to
confirm the first edge e1 with clockwise endpoint v1:
• If φ(v1) ≤ 1 three disks are sufficient to confirm e1.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

• If v1 is confirmed or φ(v1) = 2, then two disks are
sufficient to confirm e1.

We will conduct the same analysis for Phase 2 by computing
the possible values of ω(vi−1) and ω(ei) when they are first
confirmed (which depends on whether vi−1 is acute or not)
for 1 < i ≤ n. We note that no vertex can be confirmed on
∂(D) because P ∈ Int(D).
Case 1: vi−1 is not confirmed and φ(vi) ≤ 1. Since vi−1 is not
confirmed but ei−1 is confirmed, φ(vi−1) ≤ 1. We consider
the two possible sub-cases: either vi−1 is not an acute angle
vertex of P , or it is.
• Suppose vi−1 is not an acute angle vertex. It could either

have been confirmed by case (b) or case (c) from Phase
2 of the algorithm.

– Suppose it was confirmed by case (b); let x be the
point probed. For case (b) of the algorithm to confirm
a vertex, the result of the probe must be 0 (i.e.
fP (x) = 0), and this new zero-disk is the only disk
incident to vi−1; thus ω(vi−1) = 1. In this case, x
(which is actually vi−1) cannot lie on the boundary
of D (as in this case x ∈ P ⊂ Int(D)), so x is on
a segment of an (confirmed or unconfirmed) line L
on ∂(R); this line will then be confirmed as ei with
ω(ei) = 2.

– Suppose it was confirmed by case (c). By
Lemma IV.4, the new p-disk cannot pass through
vi−1, so ω(vi−1) = 1. We observe that to confirm
vi−1, the new p-disk must reduce the feasible arc
of the previous p-disk containing vi−1 to a single
point; to do this, it must confirm ei. Hence, since
ω(vi−1) = 1 and φ(vi) ≤ 1, we get ω(ei) = 2.

Therefore, in all cases, ω(vi−1) = 1 and ω(ei) = 2.
• If vi−1 is an acute angle vertex. This is similar to the

above case, except that as Lemma IV.4 doesn’t hold for
acute angles, we include the possibility that in case (c)
the resulting p-disk will pass through vi−1. If so, vi−1
is confirmed, and the next iteration of the algorithm will
be case (a). As φ(vi) ≤ 1, ω(ei) = 2, and when vi−1 is
confirmed in the next iteration ω(vi−1) ≤ 2.

Case 2: vi−1 is not confirmed and either φ(vi) = 2 or vi is
confirmed. This case is similar to case 1, except that because
φ(vi) = 2 (or vi is confirmed), ei is incident to at most
one disk, and vi−1 will be confirmed immediately after ei
is confirmed. So, ω(ei) = 1 and ω(vi−1) ≤ 2, if vi−1 is acute
and ω(vi−1) = 1 if it is not.
Case 3: vi−1 is confirmed and 0 ≤ φ(vi) ≤ 1. We consider
the two possible sub-cases: either vi−1 is not an acute angle
vertex of P , or it is.
• vi−1 is not an acute angle vertex. Since vi−1 is confirmed

before ei and vi−1 is not an acute angle, by Lemma IV.4,
ω(vi−1) = 2, and case (a) will immediately follow in the
algorithm. The next edge ei will be confirmed by two
incident disks since φ(vi) ≤ 1, so ω(ei) = 2.

• vi−1 is an acute angle vertex. According to Lemma IV.4,
it is possible that vi−1 has been confirmed with three
disks as vi−1 is an acute angle. Therefore, ω(vi−1) ≤ 3.
As in the previous case, ω(ei) = 2.

Case 4: vi−1 is confirmed and either φ(vi) = 2 or vi is
confirmed. We again consider the same two possible sub-cases
as in the above cases.
• vi−1 is not an acute angle vertex. As in case 3, ω(vi−1) =

2, but the next edge will be confirmed with one incident
disks since vi is incident to more than one disk (or already
confirmed), so ω(ei) = 1

• vi−1 is an acute angle vertex. As in case 3, ω(vi−1) ≤ 3,
and ω(ei) = 1 since vi is incident to multiple disks (or
already confirmed).

Finally, it is clear that vn will be confirmed with one disk.
Table I summarizes the result for the above four cases.

Theorem IV.9. Our algorithm uses at most 3n+m+k+1 ≤
3.5n+ k + 2 probes to find P , where k ≤ 3 is the number of
acute angles of P ; each probe is computed in O(1) time, thus
leading to an overall time complexity of O(n).

TABLE I
THE NUMBER OF INCIDENT P-DISKS TO vi−1 , ei FOR (1 < i ≤ n)

vi−1: Not acute vi−1: acute
Case vi−1 vi ω(vi−1), ω(ei) ω(vi−1), ω(ei)

1 NC NC, φ(vi) ≤ 1 1, 2 ≤ 2, 2
2 NC C or φ(vi) = 2 1, 1 ≤ 2, 1
3 C NC, φ(vi) ≤ 1 2, 2 ≤ 3, 2
4 C C or φ(vi) = 2 2, 1 ≤ 3, 1

Proof. We note that no p-disk generated at any point by the
algorithm can be incident to a previously-confirmed edge or to
a previously-confirmed non-acute angle vertex once both edges
adjacent to it have been confirmed. Note also that since the
algorithm never probes from the interior of R̄, the algorithm
never uses a probe which returns −1. Therefore, the number
of probes needed is equal to the sum of the number of p-
disks incident to each edge and vertex of P when they are
confirmed, with the possible additional k for the acute angles
already taken care of by assuming the worst case at time of
confirmation. Let nj be the number of times case j occurs,
and kj be the number of times case j occurs with an acute
vertex; then

∑4
j=1 nj = n − 1 and

∑4
j=1 kj ≤ k since the

cases begin once e1 is confirmed.
We now consider the number of p-disks incident to each

edge and vertex of P when they are confirmed, assuming no
undesirable confirmations:
• e1 is incident to at most 3 p-disks when it is confirmed
• For j = 1, 4, by Table I we note that ω(vi−1)+ω(ei) ≤ 4

if vi−1 is acute, and ω(vi−1) +ω(ei) = 3; hence at most
3nj + kj probes were used.

• For j = 2, by Table I we note that ω(vi−1) + ω(ei) ≤ 3
if vi−1 is acute, and ω(vi−1) +ω(ei) = 2; hence at most
2n2 + k2 probes were used

• For j = 3, by Table I we note that ω(vi−1) + ω(ei) ≤ 5
if vi−1 is acute, and ω(vi−1) +ω(ei) = 4; hence at most
4n3 + k3 probes were used

Consider what happens in case 3 (with vertex vi−1 and
edge ei); it occurs when vi−1 is incident to two disks (or is
confirmed) before ei is confirmed. If i = 2, then e1 must have

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 10

been adjacent to 2 p-disks. If i > 2, then case 3 was preceded
by either case 2 or case 4; if it was case 4, then since vi−1
was already confirmed, ei−1 must have been confirmed with
one fewer p-disk than our above bounds.

Thus, every instance of case 3 (which requires one more
probe per vertex-edge pair than cases 1 or 4), there is a
corresponding instance either of case 2 (which requires one
fewer probe per vertex-edge pair than cases 1 or 4) or of case
4 (or the base case) in which at least one fewer probe was
used than the bound above. So, since case 3 is the only case
in which more probes are required than cases 1 and 4, and
since we showed that every instance of case 3 is ‘offset’, we
can bound the total number of probes needed by the number
needed if only cases 1 and 4 occurred.

Thus, the pairs (v1, e2), ..., (vn−1, en) plus e1 require at
most 3n+k probes to confirm; the final vertex vn requires one
more, giving an upper bound of 3n + k + 1 probes with the
assumption that no undesirable confirmations occurred. Each
undesirable case increases the upper bound by at most 1, and
the number of such cases (by Lemma IV.8) is m ≤ n/2 + 1.
Hence, we compute our true upper bound as 3n+m+k+1 ≤
3.5n + k + 2 probes. Finally, we note that in Section III(B)
we showed that each probe requires O(1) computations, and
therefore the total time required by the algorithm is O(n).

V. PROBLEM 2: IDENTIFYING P FROM A FINITE SET

We now consider the problem of identifying a convex
polygon P with n vertices from a known finite set. Let Γ be
a (known) finite set of convex polygons and D be a (known)
disk. We are now asked to identify P using as few probes as
possible, knowing that P ⊂ Int(D) and that P ∈ Γ (where
a polygon is considered a member of Γ if it can be rotated
and translated to match an element of Γ). Let m = |Γ| and n′

be the maximal number of vertices on any polygon in Γ. We
show that 2n + 2 probes are sufficient to find P , with time
complexity O(n′m).

Remark: Since our algorithm will proceed by confirming
the edges of P in counterclockwise order, P is not considered
to be in Γ if a reflection is required to produce a match to an
element. However, if we wish to include reflections, we can
run our algorithm on an augmented set consisting of Γ plus
the reflections of all elements of Γ; this does not increase the
number of probes needed to find P by the result above, but it
doubles the computation time needed for the algorithm.

Let emin and emax be the minimum and maximum, re-
spectively, over lengths of all edges in Γ, and ψmax be the
maximum over all angles, of the polygons in Γ.

Lemma V.1. Let x0 /∈ D be a point and C0 be the p-
disk (of radius r0 > 0) generated by probing x0. Let x1
be another point such that dist(x1, x0) < d where d =
min{emin, r0 sin(π−ψmax

2)}. Let C1 be the p-disk generated
by probing x1. Then:
• If C0 is incident to an edge, C1 will be incident to the

same edge or one of its endpoints.
• If C0 is incident to a vertex, C1 will be incident to the

same vertex or one of its adjacent edges.

Fig. 6. The partitioning of the exterior of a polygon. Any probes in the same
part are incident to a common vertex or edge.

Proof. Consider all the perpendicular half-lines of the edges
of P rooted at its vertices and contained in the exterior of P .
These lines partition the exterior of P to 2n regions. Note that
if we probe from any point inside one of these regions, the
resulting p-disk hits the edge or vertex bordering the region
(Fig. 6). After probing from x0, if we choose x1 inside the
disk centered at x0 with radius d, it is easy to see that x1 lies
in the same region that x0 lies in, or in an adjacent region.

Lemma V.2. Let C0 and C1 be two intersecting disks centered
at x0 and x1, respectively. Let p0,1 be an intersection point of
their boundaries . If there are two intersection points, let p0,1
be the one closer to L0,1. For i = 0, 1, let pi be the point where
L0,1 is tangent to Ci. Then, dist(p0, p0,1) < dist(x0, x1).

Proof. Let 6 p0x0p0,1 = α and let 6 p1x1p0,1 = β where p1
is the tangent point of L0,1 on C∗1 . It is clear that α+ β ≤ π.
(Note that α + β = π when there is only one intersection
point.) 6 p0p0,1p1 = π − (α+ β)/2 ≥ π/2. Thus, the triangle
p0,1p0p1 is obtuse and dist(p0, p0,1) < dist(p0, p1). Since
dist(p0, p1) ≤ dist(x0, x1) (since p0, p1 are projections of
x0, x1 on L0,1), dist(p0, p0,1) < dist(x0, x1).

We now present Algorithm 2 as a series of lemmas. Algo-
rithm 2 maintains a list of vertices and edges confirmed, as
well as a point on e1 (after it is confirmed). At each step (after
initialization, which confirms the first edge), we then take the
last vertex or edge confirmed (in clockwise order) and show
that it is possible to determine the next edge or vertex with
a single probe. This allows us to uniquely determine P using
2n+2 probes (one probe per vertex or edge, plus initialization
cost of 2 probes). Lemma V.3 shows that either the first edge
can be confirmed with 3 probes, or the first edge and first
vertex can be confirmed with 4 probes; Lemma V.4 shows
that afterwards, the next edge or vertex can be determined
using only one probe. Theorem V.5 then puts them together
to obtain our upper bound on the number of probes needed.

Lemma V.3. There is an approach that can find either the
first edge of P with three disks or find the first edge and one
of its endpoints using 4 probes.

Proof. For any point xi, let Ci be the p-disk (with radius ri)
generated by probing it. First we probe from a point x0 ∈
∂(D). Choose x1 ∈ ∂(D) such that dist(x1, x0) < d where
d = min{emin, r0 sin(π−ψmax

2)}. By Lemma V.1, if we probe
from x1, C1 and C0 are incident with the same edge, the same

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 11

Fig. 7. The third probe from x2 results in the disk C2. There are three possible
cases: (a) If C2 is a zero disk, then three probes are sufficient to confirm
the first edge. (b) If ∂(C2) intersects the intersection of ∂(C0), ∂(C1), the
intersection point is confirmed as a vertex and probing from x3 will be tangent
to the adjacent edge. (c) Otherwise, probing from x3 (the intersection point
of ∂(C0), ∂(C1)) will confirm an edge and one of its endpoints.

vertex or an edge and its endpoint. Since d ≤ r0, the resulting
disks are not disjoint. Let p0,1 be the intersection of ζ0 and
ζ1. Without loss of generality, assume that r0 ≤ r1. We note
that it is not possible for C1 to contain C0 completely (if
C0 ⊂ C1, then x0, x1 and p0,1 become collinear while p0,1
has to be a point of P ; however, since x0 and x1 lie on ∂(D),
p0,1 lies outside of D which is not possible and thus produces
a contradiction). Thus, we can choose x2 to be the intersection
of L0,1 and C1. Note that the intersection of ∂(C1) and ∂(C2)
has to lie on ζ1.

• If r2 = 0, then L0,1 is confirmed as an edge (Fig. 7(a)).
• If r2 = dist(x2, p0,1) then p0,1 is confirmed as a vertex.

Call this confirmed vertex v. Choose x3 ∈ ∂(R) on L2(v)
such that dist(x3, v) < emin. Note that it is not possible
for C3 to intersect v. The tangent line of C3 from v is
confirmed as the first edge (Fig 7(b)).

• If 0 < r2 < dist(x2, p0,1), then we choose x3 on p0,1.
Note that Lemma V.2 implies dist(x2, x3) < d (Fig 7(c)).

– If r3 = 0, p0,1 is confirmed as a vertex. By
Lemma V.1, the tangent line of C2 from v is con-
firmed as its incident edge.

– If r3 > 0 then C3 must be tangent to L1,2. Then,
L1,2 is confirmed as a line and its intersection with
C0 is confirmed as its endpoint.

Lemma V.4. Let e1, ..., en be the edges of P in counterclock-
wise order. Suppose we have a line passing through e1 and
a point p lying on the interior of e1. Let vn and v1 be the
unknown endpoints of e1. We can find v1 using a single probe.

Proof. Without loss of generality assume that the given line is
horizontal and vn is the left endpoint of e1. First, suppose that
vn is given. Based on the edge lengths in Γ, there are a finite
number of candidate vertices for v1. Each of the candidate
vertices is associated with a region (determined by the polygon
which the candidate is based on) from which a p-disk will pass
through it. If we probe from a point which in the intersection
of all these regions, the disk will hit v1. This intersection is not
empty and is formed by the vertical line which passes through
the rightmost candidate vertex and the perpendicular line to
its next incident edge which has the lowest intersection point
with the rightmost vertical line (Fig. 8).

Fig. 8. The intersection of the corresponding regions to all candidate vertices.

Consider the case in which vn is not given; we bound its
location on the given line. Note that |e1| ≤ emax, so vn lies
between p and p′ where p′ ∈ D is the leftmost point such that
dist(p, p′) ≤ emax. Again, we aim to find a region which
is the intersection of all regions for the candidate vertices
when v1 can lie between p and p′. This region is encompassed
between two lines. One is the vertical line that passes through
the rightmost candidate vertex, assuming that v1 lies on p. The
other is the line perpendicular to the next incident edge of e1
which has the lowest intersection point with this vertical line
assuming that vn lies on p′ (Fig. 8).

Theorem V.5. 2n + 2 probes are sufficient to determine a
convex polygon P from a set of models Γ.

Proof. By Lemma V.3, to determine the first edge and a point
on it, either 3 probes are sufficient or 4 probes are used and
one of its endpoints is confirmed as well. By Lemma V.4,
the endpoint of the edge can be determined by a single probe.
To find the next edge incident to the endpoint, a single probe
can be used from a point which lies on the extension of the
current edge from its determined endpoint with the distance
less than emin. The p-disk generated by this probe will be
guaranteed to hit the next edge. Using this strategy, we need
3 + n+ (n− 1) probes to identify P .

Computing emax, emin and ψmax requires O(n′m) time.
Finding the region to probe from requires computing the
lowest intersection point of O(n′m) lines with a vertical line.
The incident edge of a vertex can be determined in O(1).
Thus, the time complexity of the algorithm is O(n′m).

VI. CONCLUSION AND FUTURE WORK

This addresses proximity probe and presents two new
algorithms. Algorithm 1 determines the shape an unknown
convex polygon P (with n vertices, k ≤ 3 of which are acute
angle vertices) requiring at most 3.5n + k + 2 probes, with
the position of each probe requiring O(1) time to compute.
Algorithm 2 addresses the problem introduced in [15] to
identify P from among a finite set Γ. Algorithm 2 solves
this using at most 2n+ 2 probes, with total computation time
O(n′m), where m is the size of Γ and n′ is the maximal size
of the polygons in Γ.

There are many interesting opportunities for future work.
One is to improve on these upper bounds and study cases
that provide lower bounds. Another very important question
is how to model and develop algorithms for the case where
probe measurements are not precise and instead lie within

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 12

some known bounds of the true value. Instead of precisely
identifying the unknown polygon, our goal here is to give an
approximation of it.

Another question is the case where proximity probes operate
from inside the polygon or polyhedron. Also of interest is
using multiple probes in parallel, where data from the set of
probes is used to compute the next set of probes. We are
also interested in extending these results to 3D and higher
dimensions and to curved and non-convex objects, perhaps
using the approach that Boissonnat and Yvinec [14] developed
to extend finger probes to non-convex polyhedra.

REFERENCES

[1] Skiena, S. S., Problems in geometric probing, Algorithmica, 4(4):599-
605,1989.

[2] Kalinin, S. V. and Gruverman, A., Scanning Probe Microscopy of
Functional Materials, 2011.

[3] Mokaberi, B. and Requicha, A.A.G., Drift compensation for automatic
nanomanipulation with scanning probe microscopes, IEEE Transactions
on Automation Science and Engineering, 3(3):199-207, 2006.

[4] Eichhorn, V., Bartenwerfer, M. and Fatikow, S., Nanorobotic assembly
and focused ion beam processing of nanotube-enhanced AFM probes,
IEEE Transactions on Automation Science and Engineering, 9(4): 679-
686, 2012.

[5] Dotson, C. L., Fundamentals of Dimensional Metrology, 2006.
[6] Czichos, H., Saito, T., and Smith, L. E., Springer Handbook of Metrology

and Testing, 2011.
[7] Susto, G. A., Schirru, A., Pampuri, S., De Nicolao, G. and Beghi, A.,

An Information-Theory and Virtual Metrology-based approach to Run-
to-Run Semiconductor Manufacturing Control, Proceedings of the IEEE
Conference on Automation Science and Engineering, 358-363, 2012.

[8] Pampuri, S., Schirru, A., Susto, G.A., De Luca, C., Beghi, A., and De
Nicolao, G. Multistep Virtual Metrology Approaches for Semiconductor
Manufacturing Processes, Proceedings of the IEEE Conference on
Automation Science and Engineering, 91-96, 2012.

[9] Klein, K. and Suri, S, Capture bounds for visibility-based pursuit
evasion, Proceedings of the 29th ACM Annual Symposuim on Com-
putational Geometry, 329-338, 2013.

[10] Cole, R. and Yap, C. K.. Shape from probing, Journal of Algorithms,
8(1):19-38, 1987.

[11] Skiena S. S., Interactive Reconstruction via Geometric Probing, Pro-
ceedings of the IEEE 80, 1364-1383, 1992.

[12] Dobkin, D., Edelsbrunner, H., and Yap, C. K., Probing convex polytopes,
Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, 424-432, Berkeley, California, 1986.

[13] Guha, S. and Kiêu Trong, K., Recognizing convex polygons with few
finger probes, Pattern Analysis and Applications, 12(2):193-199, 2009.

[14] Boissonnat, J. D. and Yvinec, M., Probing a scene of nonconvex
polyhedra, Algorithmica, 8:321-342, 1992.

[15] Rao, A. S. and Goldberg, K. Y., Shape from diameter: Recognizing
polygonal parts with a parallel-jaw gripper, Intl. J. of Robotics Re-
search, 13(1):16-37, 1994.

[16] Meijer, Henk and Skiena, Steven S., Reconstructing Polygons from X-
Rays, Geometriae Dedicata, 61(2), pp 191-20, 1996.

[17] Li, S.-Y. R., Reconstruction of polygons from projections, Information
Processing Letters, 28:235-240, 1988.

[18] Skiena S. S., Probing Convex Polygons with Half-Planes, Journal of
Algorithms 12, 359-374, 1991.

[19] Niemann, J., Electrical Measurements on Nanoscale Materials, Keithley
Instruments tutorial paper, 2004.

[20] Panahi, F., Adler, A., van der Stappen, A.F., and Goldberg, K., An
Efficient Proximity Probing Algorithm for Metrology, Proceedings of
the IEEE Conference on Automation Science and Engineering, 342-349,
2013.

[21] F. Panahi, A. Adler, A.F. van der Stappen, K. Goldberg, An Efficient
Proximity Probing Algorithm for Metrology, Technical Report UU-
CS-2013-010, Dept. of Information and Computing Sciences, Utrecht
University, Utrecht, the Netherlands, 2013.

Aviv Adler is a senior at Princeton University, where
he is pursuing his B.A. in Mathematics. His research
interests include computational geometry, motion
planning, graph theory, and algorithmic automation.

Fatemeh Panahi received her B.S. degree from
Shahid Beheshti University, Tehran, Iran in 2007 and
her M.S. degree from Amirkabir University of Tech-
nology, Tehran, Iran in 2009, both in Computer Sci-
ence. In 2011 she joined the University of Utrecht,
Utrecht, The Netherlands where she currently pur-
suing her Ph.D in Computer Science. Her research
interests include algorithmic automation, automatic
manipulation and computational geometry.

A. Frank van der Stappen (M03) received the
M.Sc. degree from Eindhoven University of Tech-
nology, Eindhoven, The Netherlands, in 1988 and
the Ph.D. degree from Utrecht University, Utrecht,
The Netherlands, in 1994. He is currently an Asso-
ciate Professor with the Department of Information
and Computing Sciences, Utrecht University. His
research interests include algorithmic automation,
path and motion planning, grasping, simulation, and
geometric algorithms.

Dr. van der Stappen is an Associate Editor for the
IEEE Transactions on Automation Science and Engineering.

Ken Goldberg is Professor of Industrial Engineering
and Operations Research at UC Berkeley, with ap-
pointments in Electrical Engineering and Computer
Science, the School of Information, and the UC San
Francisco Dept of Radiation Oncology. He served
(2006-2009) as Vice-President of Technical Activi-
ties for the IEEE Robotics and Automation Society
and is Editor-in-Chief of the IEEE Transactions on
Automation Science and Engineering. Goldberg is
Founding Co-Chair of the IEEE Technical Com-
mittee on Networked Robots and Founding Chair

of the IEEE Transactions on Automation Science and Engineering (T-ASE)
Advisory Board. Goldberg has published over 170 refereed papers and eight
US patents and was awarded the NSF Presidential Faculty Fellowship in 1995,
the Joseph Engelberger Award for Robotics Education in 2000, the IEEE
Major Educational Innovation Award in 2001 and was named IEEE Fellow
in 2005.

