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Abstract— Computing grasps for an object is challenging
when the object geometry is not known precisely; especially
for objects that are difficult for robots to perceive, such as
those with specular or transparent surfaces. These properties
introduce uncertainty in object geometry, but commonly used
polygonal mesh-based models cannot easily be extended to
represent this uncertainty. In this paper, we explore the use of
Gaussian process implicit surfaces (GPISs) to represent shape
uncertainty directly from RGBD point cloud observations of
objects. We study the use of GPIS representations to select
grasps on previously unknown objects, measuring grasp quality
by the probability of force closure. Our main contribution is
GP-GPIS-OPT, an algorithm for computing grasps for parallel-
jaw grippers on 2D GPIS object representations. Specifically, we
optimize an approximation to this quality subject to antipodal
constraints on the parallel jaws using Sequential Convex Pro-
gramming (SCP). We also introduce a method for visualizing 2D
GPIS models based on blending shape samples from a GPIS. We
test the algorithm on a set of perspective projections of objects
that are difficult for robots to perceive. Our experiments suggest
that GP-GPIS-OPT selects grasps with higher quality than a
planner that ignores shape uncertainty on 7 of 8 of our test
objects and is approximately 7.9× faster than the most common
existing method for grasp planning under shape uncertainty. We
also test our method with physical experiments on the Willow
Garage PR2 robot.

I. INTRODUCTION

Consider the task of rapidly decluttering, packing, or
unpacking objects with a robot in a warehouse or home
environment, such as the objects illustrated in Fig. 1. The
robot must be able to quickly compute grasps on each
object in order to succeed, but this may be difficult when
the geometry of objects in the environment is not known
a priori. This can be further complicated by sensor noise,
partial visibility, and surface properties of objects such as
specularity and transparency, which lead to uncertainty about
the geometry of objects. Therefore, a representation of this
shape uncertainty and a method for computing stable grasps
with respect to this uncertainty may be desirable for reliable
grasp execution.
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Fig. 1. Eight example objects illustrating transparency, specularity, and
sensor noise: (from top to bottom) (A) tape, (B) plane, (C) can opener,
(D) squirt bottle, (D) water bottle, (E) deodorant, (F) stapler, and (G)
marker. Displayed from left to right are the HD color image, a point
cloud observation from a Primesense Carmine, the nominal shape on a
25 × 25 grid, and a visualization of the GPIS representation. The GPIS
visualization is blurry in areas of larger uncertainty and sharper in areas of
low uncertainty. Black areas in the point cloud indicate missing observations,
and in transparent areas the sensor sees through the objects and measures
the depth of the table.

One promising object representation is the signed distance
function (SDF), which is zero-valued at the object surface,
positive-valued outside the object, and negative-valued in
the object interior. This representation has been used suc-
cessfully in a variety of robotic applications, such as 3D
modeling, [10], [30], modeling deformations between 3D
objects [39] and as potential fields for controlling grasps [11].
In this paper, we consider representing objects with a
Bayesian representation of SDFs known as the Gaussian
Process implicit surface (GPIS) [3], [11], [17], [33], [41]
and study the use of GPIS representations to plan grasps
in the presence of shape uncertainty. The key idea behind



GPIS-based representations is to represent shape uncertainty
as a distribution over all possible SDFs that could fit sensor
measurements of a shape. GPIS-based models have larger
variances in regions where sensor measurements are missing
or unreliable and lower variances where sensor measure-
ments are known to be accurate [41].

Our main contribution in this paper is GP-GPIS-OPT, an
algorithm to plan grasps for parallel-jaw grippers with high
grasp quality, where quality is measured as probability of
force closure given both (a) shape uncertainty represented
as a GPIS and (b) known noise in physical grasp execution.
We evaluate the algorithm in simulation and on the Willow
Garage PR2 [1] on a set of objects are challenging for robots
to perceive with visual sensors. Our experiments suggest that
GP-GPIS-OPT finds grasps with higher quality than those
planned without considering shape uncertainty and that GP-
GPIS-OPT is approximately 7.9× faster than ranking a set
of random grasps by quality using Monte-Carlo integration,
the most common existing method for grasp planning under
shape uncertainty [7], [20], [21].

II. RELATED WORK

Polygonal mesh models are the most common repre-
sentation in robotics, but extensions of mesh models to
include uncertainty is difficult. Solutions include assuming
independent noise on the vertex locations, which ignores
spatial noise correlations [21]. Gaussian process implicit
surfaces (GPISs) are an alternative that represent objects
as distribution over signed distance functions (SDFs) [10],
[33], [41], and have shown promise in a number of robotic
applications. Dragiev et al. [11] considered the use of GPIS
for shape representations in grasping, using the maximum
likelihood SDF as a potential field for a feedback controller
to reach a predefined target grasp. However, the authors did
not utilize uncertainty from the GPIS in their controller or
to plan the target grasps. Hollinger et al. [17] created high
resolution GPIS models of ship hulls to guide exploration
by an underwater robot to locations with the highest shape
uncertainty. Other works have used GPIS to fuse uncertain
data from multiple sensors and to guide haptic exploration of
object shapes [3], [19]. In comparison, our work considers
how to use a GPIS representation of shape uncertainty to
plan grasps with high probability of force closure.

Choosing grasps given a surface representation of an
object typically focuses on finding grasps given an exact
object shape by maximizing a grasp quality metric [6], [9]. A
common quality measure is the Ferrari-Canny metric, which
measures the ability to resist force perturbations [12] and is
widely used in grasp software packages such as GraspIt! [27]
and OpenGrasp [25]. Past work on grasping with uncertainty
has focused on state uncertainty [13], [14], uncertainty in
object pose [8], [40], [22] or uncertainty in the location of
contact with the object[34].

Several works have studied the effects of shape uncertainty
on grasp quality. Christopoulos et al. [7] sampled spline fits
for 2-dimensional planar objects to measure the quality of
potential grasps under shape uncertainty and used this to rank

a set of randomly generated grasps. Kehoe et al. [20], [21]
showed that adaptive sampling could be used to select grasps
robust to part tolerance for parallel-jaw grippers on extruded
polygon shape models. Hsaio et al. [18] studied a Bayesian
framework to evaluate the probability of grasp success given
uncertainty in shape and pose by simulating grasps on deter-
ministic mesh and point cloud models. Laaksonen et al. [2],
[23] used Gaussian Processes (GPs) to model distributions on
grasp stability online from tactile measurements, and selected
grasps using MCMC sampling. Panahi et al. [31] presented
an algorithm for orienting 2D industrial parts with shape
uncertainty by computing upper and lower bounds on the
orientation angle of a part.

Past work on grasp optimization primarily focuses on
optimizing contact points on a surface with respect to a grasp
quality measure when the surface is known exactly [26],
[35]. Chen et al. [5] optimized antipodal grasps to satisfy
force closure for parametric surfaces without uncertainty.
Ciocarlie et al. use simulated annealing to find grasps with
a high Ferrari-Canny metric for the GraspIt! software, using
a penalty on signed distance to the object surface to force
contact with the object [9], [27]. Simulated annealing is
based on random exploration of the input state space, which
can avoid local minima but can be less computationally
efficient than gradient-based methods [9]. Our approach can
be seen as a local optimization similar to the method of
Ciocarlie et al. [9] or Pokorny et al. [32] with constraints
similar to those used by Chen et al. [5], but our method uses
an explicit model of shape uncertainty.

III. GAUSSIAN PROCESS IMPLICIT SURFACES

In this section we review Gaussian Process implicit sur-
faces (GPISs) and describe our method to visualize them.
A signed distance field (SDF) [10] describes the shape of
an object by storing the signed distance from every point
in space to the nearest point on the surface. SDFs are
defined as a real-valued function f : Rd → R such that
f(x) > 0 outside the object, f(x) = 0 on the object
surface, and f(x) < 0 inside the object. The notion of
SDFs can be extended to incorporate uncertainty by using
Gaussian Process regression (GPR) to estimate a mean and
variance over possible SDFs that fit noisy observations. This
augmented definition is called a Gaussian Process implicit
surface [41].

A. Gaussian Process Regression (GPR)

Gaussian processes (GPs) are used in machine learning as
a nonparametric regression method for estimating continuous
functions from sparse and noisy data [33]. For a GPIS, a
training set consists of a set of input spatial locations X =
{x1, . . . ,xn}, xi ∈ Rd, and signed distance observations
y = {y1, . . . , yn}, yi ∈ R. In this work we will use d =
2 with input spatial locations X restricted to an M × M
2-dimensional grid with square cells. In practice, y might
be acquired using KinectFusion, which forms an SDF from
point clouds taken with an RGBD sensor [10], [30].



Fig. 2. Visualization method for 2D GPIS of Object H from Fig. 1 with
shape uncertainty near the object center. (Left to right) We sample 1000
SDFs, threshold for zero crossings, average sample the samples together,
and finally enhance contrast for easier perception of the uncertain regions.

A zero-mean Gaussian process implicit surface is specified
by a covariance function k(·, ·), also referred to as a kernel,
which measures the similarity in signed distance between
spatial locations. Given a set of training data D = {X ,y}
and kernel k(·, ·), the posterior distribution on SDF f∗ at a
test location x∗, p(f∗|x∗,D), is shown to be [33]:

p(f∗ | x∗,D) ∼ N
(
µ(x∗), σ

2(x∗)
)

µ(x∗) = k(X ,x∗)ᵀ(K + σ2I)−1y (1)

σ2(x∗) = k(x∗,x∗)−
k(X ,x∗)ᵀ(K + σ2I)−1k(X ,x∗) (2)

where K ∈ Rn×n is a matrix with entries Kij = k(xi,xj)
and k(X ,x∗) = [k(x1,x∗), . . . , k(xn,x∗)]

ᵀ. This derivation
can also be used to predict the mean and variance of the SDF
gradient by differentiating the kernel function, which can be
used to obtain GPIS surface normals [11], [33], [37].

In this work we use the squared exponential kernel, as
used by Dragiev et al.[11]. This kernel depends on two
hyperparameters that can be set using maximum-likelihood
estimation [41]. Other common kernels relevant to GPIS are
the thin-plate splines kernel [41] and the Matern kernel [3].

B. Visualization

GPIS models can be visualized by sampling from the
distribution on SDF zero-crossings, as illustrated in Fig. 2.
We first sample many SDFs from the GPIS over our fixed
spatial grid of input points, X , and find the zero crossing of
each sample SDF by searching for neighboring grid points
with opposite signs. This results in a single shape ‘image’
on the spatial grid. We then average all sampled shapes and
enhance the contrast using histogram equalization to make
the uncertain areas easier to perceive [38]. The result is that
regions of the shape that are more certain appear dark and
crisp, while regions of high uncertainty appear blurry.

IV. PROBLEM STATEMENT

We consider grasping an object from above using a
parallel-jaw gripper, using a 2-dimensional GPIS represen-
tation of the object contours to select grasps. We assume a
known estimate of the coefficient of friction γ between the
grasped object and the grippers, as well as hard contacts for
the parallel jaws of the grippers. We also assume the object
is rigid and stationary during the grasp.

A. Object Model

We assume a 2D GPIS representation that is augmented
to predict the gradient of the SDF [37], as described in
Section III. We use f to denote a SDF sample of the GPIS
over the spatial grid, f(·) ∼ N (µ(·), σ2(·)). We refer to the
outward pointing surface normals at a spatial location x ∈ R2

as n(x) = 5µ(x)
‖5µ(x)‖2 , which is the normalized gradient of f .

We assume that f will be evaluated over a fixed set of points
on a grid, X , as described in Section III. We also assume
a uniform mass density of the object which can be used to
predict the object center of mass z ∈ R2 given the GPIS
distribution.

B. Candidate Grasp Model

Our candidate grasp model is illustrated in Fig. 3. We
consider desired grasps consisting of a spatial location for
each of the parallel jaws relative to the GPIS representation
of an object, g1,g2 ∈ R2, which also define the orientation
of the grasp for parallel-jaw grippers. The gripper has a max
opening of wg ∈ R and that each jaw is wj ∈ R wide.
Therefore our set of candidate grasps is G = {g = (g1,g2) :
‖g1 − g2‖ ≤ wg}, and we will henceforth refer to a single
desired grasp as g.

In practice a robot may not be able to execute a desired
grasp g exactly due to errors in trajectory following or
registration to the object [18]. To handle this uncertainty, we
define an actual grasp ĝ = (ĝ1, ĝ2) as the location of the
grasp during execution. We model the error in positioning
the gripper as zero-mean Gaussian noise with isotropic
covariance σ2

gI about the desired location for the first jaw
ĝ1 ∼ N (g1, σ

2
gI), with the location of the second jaw being

conditionally dependent on the first. In practice σ2
g might be

set based on repeatability measurements for a robot [28].
Given an actual grasp, we also define a contact point as the

point at which the grasp comes into contact with an object
when following the line segment between the two parallel
jaws. We will refer to the contact configuration for an actual
grasp ĝ as c = (c1, c2) where c1, c2 ∈ R2. Formally, a
contact point c is the first 0-level set of an SDF f that the
parallel jaws pass over when following approach direction
v = ĝ2 − ĝ1. This zero crossing satisfies |f(c)| < ε for
some small ε ∈ R, ε > 0. In practice the contacts can be
found by testing points for the zero crossing condition along
v [30]. We will also refer to the surface normals at contact
configuration c as n = (n1,n2) where n1,n2 ∈ R2.

C. Quality Measure

We measure the quality of a grasp using the probability
of force closure PF [20], [21], [23], [40]. To evaluate the
PF , we use the Ferrari-Canny grasp metric QF [12], [25],
[27]. Given a set of contact wrenches W ∈ R6 derived
from contact locations c, normals n, and center of mass z,
QF (c, n, z) measures the size of the largest ball around the
origin in wrench space within the convex hull ofW [12]. The
force closure condition is equivalent to the positivity of QF ,
and therefore we define PF = P (QF > 0|g, µ, σ2) [40]. We
will use henceforth use the notation QF (ĝ, f) as shorthand



Fig. 3. Illustration of the variables defined for GP-GPIS-OPT on a Object
H of Fig. 1 with shape uncertainty near the object center. Jaw placements are
illustrated by a direction arrow and jaw. The target grasp (g1,g2) of width
wg results in actual grasp (ĝ1, ĝ2) due to errors in jaw placement. When
the jaws close, the actual grasp contacts the surface at locations (c1, c2)
with outward-pointing surface normals (n1,n2). Together with the center
of mass z, these values are sufficient to determine force closure for the
grasp.

because the c, n, and z can be derived deterministically from
actual grasp ĝ and SDF sample f .

D. Grasp Planning Definition

The optimal grasp according to the PF metric given a
GPIS mean and variance function µ(·), σ2(·) is:

g∗ = max
g∈G

P (QF (ĝ, f) > 0 | g, µ, σ2) . (3)

We can evaluate this probability by taking the expectation
of the indicator 1(QF (ĝ, f) > 0) with respect to the
distributions on actual grasps ĝ and SDFs f :

PF (g, µ, σ
2) = E[1(QF (ĝ, f) > 0) | g, µ, σ2)]

=

∫
Ĝ,F

1(QF (ĝ, f) > 0)p(ĝ | g)p(f | µ, σ2).

where Ĝ and F denote the sets of actual grasps and SDFs,
respectively.

V. GRASP OPTIMIZATION ALGORITHM

Our algorithm, GP-GPIS-OPT (Grasp Planner using GPIS
OPTimization), finds locally optimal solutions of an approx-
imation to Equation (3) using gradient-based optimization
methods with finite differences to compute derivatives [32].

A. Quality Approximation

Direct optimization of Equation (3) requires a large num-
ber of shape samples to evaluate the objective for each grasp,
which can be slow. However, we argue that under certain
conditions on the SDF uncertainty at a contact, the probabil-
ity of force closure on the the mean SDF µ, P̃F (g, µ), may
be a reasonable approximation of PF (g, µ, σ2).

Consider a desired grasp g and GPIS mean µ and variance
σ2 as defined in Section IV. Let c̃ = (c̃1, c̃2) denote the
contact points for a grasp g on the mean SDF µ. Let
A1(f) denote the event that the parallel jaws pass over a
zero crossing on SDF sample f before reaching c̃1 when
attempting g. Also, let B1(f) denote the event that c̃1 is
not a zero crossing of SDF sample f , which is defined by
|f(c̃1)| > ε, as described in Section IV-B.

Now suppose that P (A1(f)) < δ for some δ ∈ [0, 1].
Also suppose that σ2(c̃1) < τ2 for some τ ∈ R and
τ << ε. Then for any SDF f we have |f(c1)| ≤ |µ(c̃1) ±
2σ(c̃1)| < ε + 2τ ≈ ε with approximately 95% probability,
since N (µ(c̃1), σ

2(c̃1)) is a 1-dimensional Gaussian [29].
Therefore c̃1 is still likely to be a zero crossing for other
sample SDFs from the GPIS. Furthermore, the probability
that we do not contact the surface at c̃1 when attempting
grasp g is:

P (A1(f) ∪B1(f)) ≤ P (A1(f)) + P (B1(f))

≤ δ + (1.0− 0.95)

≤ δ + 0.05

Thus, given our assumptions c̃1 is likely to be the same
contact for approximately (0.95− δ) of SDFs sampled from
the GPIS. Finally, assuming that z ≈ E[z|µ, σ2], P̃F (g, µ)
may be a reasonable approximation of PF (g, µ, σ2).

We attempt to satisfy the assumption σ2(c̃1) < τ2 by
using a soft version of the constraint σ2(c̃i) < τ2 in our
optimization. Specifically, we propose to penalize the σ2 by
λ ∈ R, λ > 0 which has one-to-one correspondence with a
choice of τ [4]:

maximize
g∈G

P̃F (g, µ)− λ(σ2(c̃1) + σ2(c̃2)) (4)

High values of λ, which correspond to smaller τ , may
increase the accuracy of the approximation but may discard
grasps with high PF . Very small values of λ may increase
the set of possible grasps but the approximation will become
increasingly inaccurate. We acknowledge that the choice of
λ is somewhat arbitrary and in practice λ might be set using
cross-validation, similar to choosing a regularization penalty
in regression models [4], [15].

We cannot directly incorporate minimization of the δ
satisfying P (A1(f)) < δ at this time and consider it a current
shortcoming of our method. Therefore, this approximation
may be poor is when there is considerable uncertainty in the
space between the locations of a desired grasp g1,g2 and
the zero crossing of µ. However, in Section VI-B we show
that empirically this does not prevent GP-GPIS-OPT from
finding grasps with high PF .

B. Grasp Constraints

Parallel-jaw grippers have two points-of-contact which
must be approached from opposite directions, and thus
we constrain the grasp contacts on the mean shape to be
antipodal [5]. For unit outward pointing normal vectors n
at contact c and approach direction v = ĝ1 − ĝ2, c is an
antipodal pair if the contacts have (a) opposite normals and



(b) normals aligned with the approach direction [5]. We
convert these constraints to inequalities because on actual
objects it may be impossible to satisfy the definitions exactly:

‖n1 + n2‖22 ≤ α (5)

nT1 v ≥ β‖v‖22 (6)

−nT2 v ≥ β‖v‖22 (7)

For 2-dimensional shapes the choice of β = cos(arctan(γ))
guarantees that points in the feasible region will be in force
closure for the mean SDF [5], [7], and α may be set using
a grid search.

C. Grasp Selection Algorithm

Taking the objective of Equation 4 and the constraints of
Equations 5, 6, and 7 yields the optimization objective:

maximize
g∈G

P̃F (g, f)− λ(σ2(c1) + σ2(c2))

subject to: ‖n1 + n2‖22 < α

nT1 v > β‖v‖22
− nT2 v > β‖v‖22

where c1, c2,n1,n2, and v are derived from candidate grasp
g on the mean shape µ as described in Section IV-B.

This problem is non-convex due to the QF quality evalu-
ation, and therefore we can only expect a locally optimal so-
lution to this problem for a single random initialization. The
GP-GPIS-OPT (Grasp Planner using GPIS OPTimization)
algorithm, detailed in Algorithm 1, repeatedly finds locally
optimal grasps for Equation (8) from a user-specified number
of random initializations Ng and selects the grasp with the
highest objective value. In this work we use Ng = 20, based
on the empirical worst-case time to converge to a solution
for 25× 25 GPIS models.

GP-GPIS-OPT uses Sequential Convex Programming
(SCP) to find a locally optimal grasp for Equation (8) given a
random initial grasp. SCP iteratively forms a convex approx-
imation to the problem and solves the approximation within
a confidence [36], [42]. SCP turns non-convex constraints
into penalties and iteratively increasing a penalty coefficient,
similar to Interior Point methods [36]. Although PF is
not differentiable everywhere, we use finite differences to
approximate the gradients, as has been shown to work well
empirically for optimizing QF on deterministic shapes [32].

VI. EXPERIMENTS

A. Dataset

We evaluated the performance of our grasp selection
method on a set of 8 household objects. Our test set of
objects is displayed in Fig. 1 and is available at http:
//rll.berkeley.edu/grasping/. The objects cho-
sen illustrate various properties which lead to missing or
invalid measurements with an RGBD camera: (a) trans-
parency, (b) translucency, (c) specularity, and (d) partial
visibility. Missing measurements arise from specularity or
partial visibility, and appear as black regions in point clouds.
For example, the wings of Object B and the metal parts of

1 Input: GPIS Model µ(·), σ2(·), Grid X , and Number
of Initial Grasps Ng
Result: Grasp Proposal g∗ and Objective Value V ∗

2 Initialize mean shape µ(X );
3 Initialize grasp count k = 0 ;
4 Initialize V ∗ = −∞ ;
5 while k < Ng do
6 Sample valid initial grasp g0,k ;
7 Use SCP to find a locally optimal grasp gk for

Equation 8 with objective value Vk ;
8 if Vk > V ∗ then
9 g∗ = gk ;

10 V ∗ = Vk ;
11 end
12 k = k + 1 ;
13 end

Algorithm 1: The GP-GRASP-OPT Algorithm

Object C and G cannot be sensed by the RGBD camera.
Invalid measurements, such as measuring the table behind a
transparent region, also occur for the Objects A and E.

We created a 2-dimensional SDF for each object in a 25 ×
25 grid based on the point clouds of the object by specifying
the shape surface as the SDF zero-crossing. We also created
an occupancy map, which holds 1 if the point could be
observed with a depth sensor and 0 if the point could not
be observed, and a measurement noise map, which holds
the variance of 0-mean noise added to the SDF values. The
noise values were set uniformly for observed locations. The
parameters of the squared exponential kernel were selected
using maximum-likelihood on a held-out set of validation
shapes; see [33] for details on this method.

B. Grasp Planning
To evaluate the performance of GP-GPIS-OPT, we com-

pared the probability of force closure PF performance of 5
competing methods for selecting a grasp g:
• GP-M: Selects g with the highest Ferrari-Canny quality
QF on the mean SDF from 1000 random grasp samples.

• GP-P: Selects g with the highest PF from 1000
randomly sampled grasps, evaluating each grasp with
Monte-Carlo integration over 1000 shapes [7], [21].

• GP-D: Optimizes PF on the mean SDF µ.
• GP-U: Optimizes PF on the mean SDF µ with uncer-

tainty penalty λ, as in Equation (4).
• GP-G: The GP-GPIS-OPT algorithm, as detailed in

Algorithm 1.
GP-M is fast because it ignores shape uncertainty, but

may find grasps with low PF . GP-P selects grasps with
high PF but is slow because it requires a large number of
SDF samples and grasps [7], [20], [21]. This method may be
prohibitively slow on higher resolution models; for example,
sampling n shapes from a fixed grid of size m × m takes
O(nm2) space to store samples and O(m6) time because it
involves the Cholesky decomposition of an m2-dimensional
Gaussian [24], [29]. GP-GPIS-OPT is designed to be faster
than GP-P and is also to select grasps with high PF . GP-
D and GP-U are of comparable speed and are presented



Probability of Force Closure PF Runtime (sec)

Object GP-M GP-I GP-D GP-U GP-P GP-G GP-P GP-G

A 0.72 0.99 0.43 0.13 0.99 0.99 645.5 110.9
B 0.38 0.56 0.12 0.57 0.98 0.79 715.8 72.4
C 0.15 0.06 0.32 0.50 0.96 0.90 744.7 85.5
D 0.75 0.07 0.00 0.01 0.91 0.37 848.7 84.3
E 0.47 0.98 0.20 0.99 0.99 0.99 545.9 149.8
F 0.70 0.46 0.00 0.98 0.99 0.99 701.8 75.6
G 0.98 0.77 0.83 0.00 0.99 0.99 817.6 107.5
H 0.42 0.62 0.47 0.00 0.99 0.93 715.0 85.5

TABLE I
COMPARISON OF THE PROBABILITY OF FORCE CLOSURE PF (A) GP-M, WHICH SELECTS A GRASP BASED ON ONLY THE MEAN SDF, (B) GP-I, WHICH

SELECTS THE INITIAL GRASP IN THE OPTIMIZATION WITH HIGHEST PF , (C) GP-D, WHICH OPTIMIZES PF ON THE MEAN SDF, (D) GP-U, WHICH

OPTIMIZES THE PF WITH AN UNCERTAINTY PENALTY, AND (E) GP-G, THE GP-GPIS-OPT ALGORITHM. WE ALSO COMPARE WITH GP-P, WHICH

CHOOSES THE GRASP WITH HIGHEST PF FROM A SET OF 1000 RANDOM GRASP SAMPLES. WE ASSUME GP-P TO BE NEAR-GROUND-TRUTH DUE TO

THE LARGE NUMBER OF GRASP SAMPLES. GP-GPIS-OPT PERFORMS AS WELL AS GP-P ON 4 OF 8 OBJECTS AND SELECTS GRASPS WITH HIGHER PF

THAN METHODS OTHER THAN GP-P FOR 7 OF 8 OBJECTS. WE ALSO COMPARE THE WORST-CASE RUNTIME TO CONVERGE TO A GRASP PLAN FOR

GP-GPIS-OPT AND GP-P, AND SEE GP-GRASP-OPT IS ON AVERAGE 7.9× FASTER THAN GP-P.

to evaluate the use of the uncertainty penalty and antipodal
constraints in GP-GPIS-OPT.

The parameters of GP-GRASP-OPT, GP-D, and GP-U
were Ng = 20 and a grasp approach uncertainty of σ2

g =
0.25. The uncertainty penalty of GP-GRASP-OPT and GP-
U was set to λ = 2.0 based on a grid search using the set of
validation shapes [15]. The sampling-based methods GP-M
and GP-P used 1000 random grasp samples, chosen based
on the number of random samples required for the methods
to converge to a single grasp. All experiments were run on
machine with OS X with a 2.7 GHz Intel core i7 processor
and 16 GB 1600 MHz memory in Matlab 2014a.

Table I compares PF for each of the grasp selection
methods and the runtimes for GP-P and GP-GPIS-OPT. To
illustrate progress made by the optimization we also include
the grasp chosen by GP-I, the random initial grasp used in
GP-GPIS-OPT with the highest PF . Since GP-P samples an
exhaustive set of 1000 grasps, we consider it near-optimal
for the purposes of comparing PF . The runtimes reported
for GP-P and GP-G are the worst-case runtimes to converge
to a grasp plan. For GP-P this is the time to evaluate 753
grasp samples, the worst case number observed over all
experiments, and for GP-G this is the time to optimize all
Ng grasps.

We see that GP-GPIS-OPT chooses the grasp with the
same PF as GP-P on 4 of 8 objects and the grasp with the
highest PF for methods other than GP-P on 7 of 8 objects.
GP-GRASP-OPT is also faster than GP-P on all objects, with
approximately a 7.9× speedup over GP-P on average.

Fig. 4 illustrates grasps chosen by GP-M, GP-P, and GP-
GPIS-OPT for Objects A-D and compares PF and QN , the
Ferrari-Canny quality on the nominal shape. We see that for
several objects, GP-M may choose a grasp that is not in
force closure on the nominal (true) shape. For example, on
Object A the grasp chosen by GP-M is not in force closure
because it ignores the tape dispenser, which cannot be sensed
with the depth sensor. However, both grasps that take into
account shape uncertainty are able to avoid the dispenser

Fig. 5. Comparison of grasps chosen by our algorithm on Object B, the toy
plane, with different patterns of shape uncertainty: (left to right) uncertainty
in the tips and edges of wings, uncertainty in the entire wings, uncertainty
in the cockpit end of the plane, and uncertainty in both the cockpit and
rudder end of the plane.

and choose a grasp with high PF and QN . We also see that
grasps chosen by our algorithm have higher QN than GP-M
on all shapes. Additionally, GP-GPIS-OPT chooses grasps
qualitatively and quantitatively similar to GP-P but is faster,
as reported in Table I.

C. Sensitivity to Shape Uncertainty

Fig. 5 compares grasps chosen by GP-GRASP-OPT with
different patterns of shape uncertainty on Object B, the toy
plane. We consider shape uncertainty when Object B, the
toy plane, has noise only on the edges of the wings, when
the entire wings are not observed, when the tip of the plane
is not observed, and when both the front and the back are
not observed. In both cases when there is uncertainty in the
wings, the selected grasp is on the endpoints of the plane.
With uncertainty on the front end of the plane the algorithm
chooses a grasp that leverages a wing and a rear stabilizer,
but with uncertainty on both endpoints the algorithm selects
the tip of the wings, resulting in an unstable grasp.

D. Physical Grasp Experiments with the PR2

We tested grasps for Object A, a roll of Scotch tape, on
the two-armed Willow Garage PR2 [1]. We created a GPIS
from a point cloud segmentation of the object. We compared
GP-M, GP-P, and GP-GPIS-OPT with Ng = 10 and λ =
2.0, chosen by grid search [15]. The grasps chosen by these
methods are illustrated in Fig. 6. The grasp chosen by GP-
M had predicted PF = 0.48 and achieved force closure on



Fig. 4. Visual comparison of grasps on Objects A, B, C, and D (top to bottom) selected by (left to right) (i) GP-M, which chooses the grasp with highest
QF on the mean SDF, (ii) GP-P, which chooses the grasp with the highest probability of force closure PF from 1000 random grasp samples and (iii)
GP-GPIS-OPT, our algorithm for selecting grasps using optimization. The Ferrari-Canny quality on the nominal shape QN and PF are listed to the left
of each grasp. We see that GP-GPIS-OPT outperforms GP-M in terms of QN ; for example, on the Object A GP-M chooses a grasp on the transparent
tape dispenser but GP-GPIS-OPT avoids this region due to shape uncertainty. Also, grasps chosen by GP-GRASP-OPT are comparable to those chosen
by GP-P in both PF and QN , but GP-GPIS-OPT requires fewer random initializations.

Fig. 6. Grasps selected for execution on the PR2 for Object A overlayed on
images of the object from a head-mounted Primesense Carmine. The grasp
with highest QF on the mean shape fails does not consider the transparent
dispenser, but GP-GPIS-OPT avoids the area due to uncertainty in the object
geometry near the dispenser.

only 1 of 10 trials. The failures were due to the gripper
contacting and sliding along the transparent outer surface of
the tape canister, which could not be sensed reliably with
either depth or color images. The grasp chosen by GP-P had
predicted PF = 0.71 and achieved force closure on 10 of 10
trials. The grasp chosen by GP-GPIS-OPT had PF = 0.58
and also achieved force closure on 10 of 10 trials.

VII. DISCUSSION AND FUTURE WORK

We presented GP-GPIS-OPT, an algorithm for selecting
parallel-jaw grasps with high probability of force closure
PF on Gaussian process implicit surface representations of
shape uncertainty. Our experiments suggest that GP-GPIS-
OPT plans grasps with higher PF than methods that ignore

shape uncertainty, and it is faster than the most common
existing method for grasp planning with shape uncertainty.

Future work will extend our method to 3D GPIS models,
which will bring several challenges. Since GPIS construction
takes O(n3) time where n is the number of input spatial
locations, we will investigate how to construct GPIS mod-
els efficiently by using a representative subset of training
points [16]. We will also implement GP-GPIS-OPT on a
multicore or Cloud Computing framework and assess per-
formance on 3D models, as it is parallelizable over random
initial grasps (Line 5 of Algorithm 1). Furthermore, we will
extend our method to multi-point grasps on 3D GPIS models
by optimizing over joint angles and using forward kinematics
to determine contact locations [9].

A current shortcoming of GP-GPIS-OPT is the use of
a heuristic approximation to PF that introduces a penalty
term λ into our objective. Future work will study the effect
of λ on the quality of selected grasps and consider alter-
native quality measures and approximations. We will also
consider re-ranking grasps optimized by GP-GPIS-OPT by
the exact quality PF using Multi-Armed Bandit sampling
methods [24].

Our dataset, code, and videos of our experiments are avail-
able at http://rll.berkeley.edu/grasping/.



VIII. ACKNOWLEDGMENTS

This work has been supported in part by the U.S. Na-
tional Science Foundation under Award IIS-1227536, and
by grants from Google and Cisco. We thank our colleagues
who gave feedback, suggestions, and help on the PR2, in
particular James Kuffner, Florian Pokorny, Michael Laskey,
Greg Kahn, Sanjay Krishnan, Sylvia Herbert, Zoe McCarthy,
Alex Turney, John Schulman, and Dylan Hadfield-Menell.

REFERENCES

[1] “Willow garage pr2,” http://www.willowgarage.com/pages/pr2/
overview.

[2] Y. Bekiroglu, J. Laaksonen, J. A. Jorgensen, V. Kyrki, and D. Kragic,
“Assessing grasp stability based on learning and haptic data,” Robotics,
IEEE Transactions on, vol. 27, no. 3, pp. 616–629, 2011.

[3] M. Bjorkman, Y. Bekiroglu, V. Hogman, and D. Kragic, “Enhancing
visual perception of shape through tactile glances,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE, 2013, pp. 3180–3186.

[4] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2009.

[5] I.-M. Chen and J. W. Burdick, “Finding antipodal point grasps on
irregularly shaped objects,” Robotics and Automation, IEEE Transac-
tions on, vol. 9, no. 4, pp. 507–512, 1993.

[6] J.-S. Cheong, H. Kruger, and A. F. van der Stappen, “Output-sensitive
computation of force-closure grasps of a semi-algebraic object,” Au-
tomation Science and Engineering, IEEE Transactions on, vol. 8, no. 3,
pp. 495–505, 2011.

[7] V. N. Christopoulos and P. Schrater, “Handling shape and contact
location uncertainty in grasping two-dimensional planar objects,” in
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on. IEEE, 2007, pp. 1557–1563.

[8] V. N. Christopoulos and P. R. Schrater, “Grasping objects with
environmentally induced position uncertainty,” PLoS computational
biology, vol. 5, no. 10, p. e1000538, 2009.

[9] M. Ciocarlie, C. Goldfeder, and P. K. Allen, “Dimensionality reduction
for hand-independent dexterous robotic grasping,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems: San
Diego, CA, 29 October-2 November 2007. IEEE, 2007, pp. 3270–
3275.

[10] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. ACM,
1996, pp. 303–312.

[11] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2011, pp. 2845–2850.

[12] C. Ferrari and J. Canny, “Planning optimal grasps,” in Robotics and
Automation, 1992. Proceedings., 1992 IEEE International Conference
on. IEEE, 1992, pp. 2290–2295.

[13] K. Y. Goldberg and M. T. Mason, “Bayesian grasping,” in Robotics and
Automation, 1990. Proceedings., 1990 IEEE International Conference
on. IEEE, 1990, pp. 1264–1269.

[14] K. Y. Goldberg, “Stochastic plans for robotic manipulation,” 1990.
[15] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation

as a method for choosing a good ridge parameter,” Technometrics,
vol. 21, no. 2, pp. 215–223, 1979.

[16] A. Gotovos, N. Casati, G. Hitz, and A. Krause, “Active learning for
level set estimation,” in International Joint Conference on Artificial
Intelligence (IJCAI), 2013.

[17] G. A. Hollinger, B. Englot, F. Hover, U. Mitra, and G. Sukhatme,
“Uncertainty-driven view planning for underwater inspection,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 4884–4891.

[18] K. Hsiao, M. Ciocarlie, and P. Brook, “Bayesian grasp planning,” in
ICRA 2011 Workshop on Mobile Manipulation: Integrating Perception
and Manipulation, 2011.

[19] J. Ilonen, J. Bohg, and V. Kyrki, “Fusing visual and tactile sensing for
3-d object reconstruction while grasping,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE, 2013, pp.
3547–3554.

[20] B. Kehoe, D. Berenson, and K. Goldberg, “Estimating part tolerance
bounds based on adaptive cloud-based grasp planning with slip,” in Au-
tomation Science and Engineering (CASE), 2012 IEEE International
Conference on. IEEE, 2012, pp. 1106–1113.

[21] ——, “Toward cloud-based grasping with uncertainty in shape: Esti-
mating lower bounds on achieving force closure with zero-slip push
grasps,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on. IEEE, 2012, pp. 576–583.

[22] J. Kim, K. Iwamoto, J. J. Kuffner, Y. Ota, and N. S. Pollard,
“Physically-based grasp quality evaluation under uncertainty,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 3258–3263.

[23] J. Laaksonen, E. Nikandrova, and V. Kyrki, “Probabilistic sensor-based
grasping,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 2019–2026.

[24] M. Laskey, Z. McCarthy, J. Mahler, F. Pokorny, S. Patil, J. van den
Berg, D. Kragic, P. Abbeel, and K. Goldberg, “Multi-armed bandit
models for sample-based grasp planning in the presence of uncer-
tainty.” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on (Under Review). IEEE, 2015.

[25] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner, et al., “Opengrasp: a
toolkit for robot grasping simulation,” in Simulation, Modeling, and
Programming for Autonomous Robots. Springer, 2010, pp. 109–120.

[26] G. Liu, J. Xu, X. Wang, and Z. Li, “On quality functions for grasp
synthesis, fixture planning, and coordinated manipulation,” Automation
Science and Engineering, IEEE Transactions on, vol. 1, no. 2, pp.
146–162, 2004.

[27] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic
grasping,” Robotics & Automation Magazine, IEEE, vol. 11, no. 4, pp.
110–122, 2004.

[28] B. Mooring and T. Pack, “Determination and specification of robot
repeatability,” in Robotics and Automation. Proceedings. 1986 IEEE
International Conference on, vol. 3. IEEE, 1986, pp. 1017–1023.

[29] D. F. Morrison, “Multivariate statistical methods. 3,” New York, NY.
Mc, 1990.

[30] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
Mixed and augmented reality (ISMAR), 2011 10th IEEE international
symposium on. IEEE, 2011, pp. 127–136.

[31] F. Panahi, M. Davoodi, and A. F. van der Stappen, “Orienting parts
with shape variation,” 2014.

[32] F. T. Pokorny, K. Hang, and D. Kragic, “Grasp moduli spaces.” in
Robotics: Science and Systems, 2013.

[33] C. E. Rasmussen, “Gaussian processes for machine learning,” 2006.
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