Motion Planning For Steerable Needles in 3D Environments with
Obstacles Using Rapidly-Exploring Random Trees and Backchaing

Jijie Xul, Vincent Duindam, Ron AlterovitZ:3, and Ken Goldbert?
1. Department of IEOR, University of California, Berkel&)A
2. Department of EECS, University of California, BerkeldgA
3. Comprehensive Cancer Center, University of Califori@an Francisco, USA

Abstract—Steerable needles composed of a highly exible

material and with a bevel tip offer greater mobility compared 10

to rigid needles for minimally invasive medical procedures In

this paper, we apply sampling-based motion planning techmjue 8

to explore motion planning for the steerable bevel-tip neeld in

3D environments with obstacles. Based on the Rapidly-expliog 6

Random Trees (RRTs) method, we develop a motion planner to
quickly build a tree to search the con guration space using anew 4

exploring strategy, which generates new states using randdy .
sampled control space instead of the deterministically sapied 2

one used in classic RRTs. Notice the fact that feasible patinsight

not be found for any given entry point and target con guration, 04 _

we also address the feasible entry point planning problem tond o
feasible entry points in a speci ed entry zone for any given arget 55 0 ®

con guration. To solve this problem, we developed a motion fan-

ning algorithm based on RRTs with backchaining, which grow

backward from the target to explore the con guration space. Fig. 1. An approximation of 3D environment of needle insertfor prostate
Finally, simulation results with a approximated realistic prostate using spherical obstacles.

needle insertion environment demonstrate the performancef the

proposed motion planner.

orientation changes during insertion. The rotation notyonl

changes the needle tip's orientation about its axis, but als

In_sgrting a nee_dle to dgliver treqtment or to biopsy tissueﬁavigates the direction of the insertion. More exible ridas
a minimally invasive and inexpensive per(_:utaneogs prmE_Ed,lﬁave to be made by the needle in order to generate its path in
that can often be performed on an outpatient basis. Acl’gev%e 3D workspace. This makes motion planning for the bevel-

accuracy in the needle tip position is challenging due t Ia%p steerable needle in 3D environments more complicated.
of maneuverability, limited visibility, and possible ohsttions In this paper, we apply sampling-based motion planning

betweep the needle entry point and the target zone. As t%'ghniqueto explore motion planning of the bevel-tip sibér
alternative to the traditional rigid symmetric-tip needt®l-

. . . - needle in 3D environments with obstacles. We develop a
Iabc_)rato_rs at Johns Hopkins Un_lversny and the Un!versfty ew motion planner by inspired by the well-known rapidly-
_Callfornla, B_erkeley are develop|r!g anew class _O_f hlghly-e exploring random trees method (RRTSs). In order to make a
ible, bevel-tip needl_es tha’F offer |m_proved mob|l|ty, etmag)_ .trade-off between the complexity and completeness of the
them to reach previously inaccessible targets while amgidi RT exploration, we propose a new vertex generation syateg
sensitive or impenetrable areas, such as the urethra andﬁ eusing a randomly sampled control space instead of the
pe&”i. bulb Iarou_nd t?e pbrost?ttg astlllustrbalted in dFIIg. hl[ﬂ]lb deterministically sampled one. Considering the requirgse
otion planning for bevel-ip steeravle Needle Nas DeEY oy clinical tasks, we further address the feasible yentr
studied in the two-dimensional image plane [3], [4]. Plawgni oint planning problem, and solve it by developing a plan-
motions for steerable needle in 3-D environment is moEgEr based on RRTs with backchaining. To the best of our
dif cult due to the nonholonomic constraint and the undera(f(nowledge this work is the rst to apply. RRT-based motion

tuation |_nherent in the bevel-_t|p design. Motion of the Hetye lanning techniques in steerable needle motion planniddpin
needle in a 3D workspace is controlled by only two degre%?ﬁvironments

of freedoms at the needle base: insertion along the needle
axis and rotation about the needle axis. Asymmetric forces 1. RELATED WORK

on the needie’s beveled tip cause the needle to bend _a'nq'he bevel-tip needle design has been shown to signi cantly
follow a curved path through the tissue, and the needle tidfgect the needle bending forces during insertion [5]. Base

This work was supported by NIH grant RO1 EB006435 and the éttzthds on this observation, Webster et al. [6]’ [7]’ [8] eXp(':'rimﬂht
Organization for Scienti c Research. further and showed that steerable bevel-tip needles follow

I. INTRODUCTION



paths of constant curvature in the direction of the bevel tif20]. By using hints obtained from obstacles to navigate the
They also developed a nonholonomic model of steerable bewgindomly sampled nodes away from obstacles, Rodriguez et
tip needle motion in stiff tissues based on a generalizatfon al. developed an obstacle-based RRT method to ef ciently
the bicycle model and t model parameters using experimenggplore the tree in dif cult regions in th€-space [21]. These
with tissue phantoms [7]. works developed different exploration strategies for RRiith

Motion planning for steerable needles in a 2D workspacandomly sampledC space and deterministic control space.
has been studied, incorporating the effects of tissue defé&mnepper et al. experimentally studied the relationshipveen
mations and motion uncertainty into planning. Modeling theath sampling strategy and mobile robot performance, and
bevel-tip needle's motion in a 2D workspace as a nomhowed that different deterministic samplings of path &eds
reversible Dubins car, Alterovitz et al. formulated the 2o different performances of motion planners for mobileatsb
steerable needle motion planning problem as a nonlinear op22]. In this paper, we propose an exploration strategy fier t
mization problem that uses a simulation of tissue deformmatiRRT with both randomly sample@-space and control space.
during needle insertion as a function in the optimizatignT® To the best of our knowledge, this is the rst paper that agpli
consider motion uncertainty due to needle/tissue intemact RRT-based method to the steerable needle motion planning
Alterovitz et al. formulated the motion planning problemaas and develops a unidirectional exploration strategy using a
Markov Decision Process (MDP) using a discretization of thrndomly sampled control space. Bidirectional exploratio
space and orientations [3], [4] and using the Stochastiddot with sampled control space will be explored in future work.
Roadmap (SMR), a sampling-based approach [9]. Alterovitz
et al. also introduced a motion planner to solve for the ogkim
insertion location in 2-D [4], a problem we consider in this To make the problem well de ned, we make the following
paper for 3D environments. assumptions:

With the development of volumetric medical imaging techt). The bevel-tip needle is rigid, and rotating the needlhat
nigues, research on steerable needle insertion has beenbase will not change its position in the workspace.
tended to more complex 3D environments. Kallem et al. [1@).The needle body follows motion of the needle tip, and the
developed a nonlinear controller to stabilize the need®®s tip's orientation exactly follows the base's orientation.
motion on a desired 2D plane for use with 2D imaging). The feasible workspace is stiff and de ned as a 3D cuboid.
modalities and motion planning algorithms. Park et al. [L1jJo deformation of the workspace and obstacles is considered
treated the kinematics of the bevel-tip needle as the 3D this paper.
extension of the standard unicycle model, and proposeddp Obstacles are 3D balls with constant radius. Obstadiés w
diffusion-based motion planning method to numerically eommore complicated shapes will be considered in future work.
pute a path in the obstacle-free stiff tissue. Abolhassaal.e With the above assumptions, the steerable needle motion
[12] proposed a method to minimize the needle's de ectioplanning problem can be stated as follows.
by controlling the needle's rotation during the insertiars;: Problem 1 (Steerable needle motion planningpiven an
ing online measurements through force/moment sensing. Bytial con guration and a target zone, determine a feasibl
representing the motion of the bevel-tip needle as a scr@ath and the corresponding sequence of controls (insertion
motion in a 3D environment, Duindam et al. [13] formulatedepths and rotations at the needle base) so that the needle
3D motion planning of the steerable needle as a dynamicgl reaches the target zone from the initial con gurationiterh
optimization problem with a discretization of the contrpése. avoiding obstacles and staying inside the workspace.
We study a similar problem of nding valid needle paths in 3Dnput Boundaries of the workspace, parameters of the bevel-
environments with obstacles, yet our approach builds aaglotip needle, locations and radius of the spherical obstaeles
roadmap that (probabilistically) explores the entire vemdce, entry con guration of the needle, a target zone that the keed
whereas the previous algorithm [13] only considered Igcalls required to reach.
optimal paths and may fail in more complex environments.Output A sequence of discrete controls, with which the needle

The Rapidly-exploring Random Tree (RRT) has showsteered from the given entry point to reach the target zone, o
its potential in dealing with motion planning problems fom report that no path is found. ]
nonholonomc systems [14][15]. It incrementally grows a&tre Because of the needle's nonholonomic constraints and the
toward the target con guration by searching feasible paths structure of the environment, there may not exist feasible
the con guration space, and provides an ef cient and quickaths reaching the target for all given initial con gurat®
search in complex environments of high dimensions with diMoreover, feasible paths for any given initial con guratio
ferent constraints [14], [16], [17], [18]. By alternatingttween may not be found by motion planners developed for Problem 1.
growing two trees (rooted at the start and goal con guratiofor this reason, we address the feasible entry point plgnnin
respectively) towards random samples and towards each otlpeoblem as follows.
Kuffner et al. developed the bidirectional RRT Connect algo Problem 2 (Feasible entry point planning)Given a speci-
rithm to increase the ef ciency [19]. Branicky et al. extertd ed target con guration and an initial zone, determine adiea
the RRT-based method to solve motion planning problerbte entry point in the zone and the corresponding sequence of
in systems with a hybrid con guration space and constraint®ntrols (insertion depths and rotations at the needlese)ba

IIl. PROBLEM STATEMENT




relative to the spatial frame, and

v 2 3
0 I (t) 0 0
r b _§!(t) 0 v(t)=r 0 Z
\ z Bo=80" v 0 w5 (3)
o 0 0 0 0
X Y For constan¥/?, , the needle motion can also be interpreted as
a screw motion with constant axis and pitch [23], [13]. When
the entire insertion of the needle is discretized iNtosteps
P y ! with correspondingN time segment$l,; ;Ing, and the
X velocity VP (1) is xed in each step, the nal con guration
Fig. 2. Model of the bevel-tip needle. of the needle tip can be computed as a product of exponentials
gro(T) = QPo(O)eOF?O (ot gl ()ln (4)
so that the needle tip reaches the specied target from this&/. MOTION PLANNING FOR STEERABLE NEEDLE USING
entry point while avoiding obstacles and staying inside the FORWARD RRTS
workspace.

The con guration of the needle tip can be represented
y its position (x;y;z) and Euler angleq;; ). Since
the insertion task only requires the needle to reach a target
osition inside the 3D workspace, the con guration space of
E‘?e motion planning is equivalent ®3. Given boundaries of
gt%te workspace[Xmin; Xmax: [Ymin; Ymaxs [Zmin; Zmax]), lOcations

of the obstacles, the needle's initial con guratiag,;; and

target zoneSyoa, a tree can be constructed with the classic
IV. KINEMATICS OF THEBEVEL-TIP FLEXIBLE NEEDLE Rqu' [17] goal

Input Boundaries of the workspace, parameters of the bevg
tip needle, locations and radius of the spherical obstathes
target con guration, the entry zone.

Output A feasible entry point and the corresponding sequen
of discrete controls, with which the needle reach the tar
region, or a report that no path is found. ]

Consider the bevel-tip needle shown in Fig. 2. Referring to Algorithm 1: (Forward RRT with deterministic control
the notations in [23], attach a spatial frafReto the base of space sampling)nitialize a treeT rooted atsiyi. For a
the needle and a body fran®@ to the geometric center of randomly sampled collision free stagngin CSree, We search
the needle's bevel-tip, respectively. The con gurationtbé T for the nearest neighbor ofang, denoted bySnear By
needle tip can be represented homogeneously by the 4 bgRplying deterministically sampled control inputssi@a, for a
transformation matrix of the object frame relative to thatigd short time increment , we generate a set of all possible new
frame as statesSpew- IN Spews the nearest neighbor &f,ng denoted by

_ Rpo Ppro ) Snews 1S found and added t©. Such an exploration is repeated
%o = g 1 2 SEE): until T\ Sgoai 6 ; or the number of iteration reaches its limit.
The distance used in the nearest neighbor search can be
whereRpo 2 SO(3) is the rotation matrix angpeo 2 T(3)  de ned in different ways by de ning different metrics on the
is the position of frame relative to frameS. con guration space. To let the RRT grow toward the target

The motion of the needle is fully determined by two motiongone fast, we apply a biased distribution of the sampling
performed at the bevel-tip: insertion with velociyt) in the states inCSyee. The states;ang is sampled mostly uniformly
z direction and rotation with velocity (t) along thez axis of inside the boundaries of the con guration space, excepafor
the body frameD [7], [13]. It has been experimentally shownhigher density inSyoai If Srana collides with any obstacle, it

by Webster et al. [8] that the bevel-tip needles will follows discarded and new states are sampled until or@Sne is

a constantly curved path with curvature= rl when pushed found.

with zero bevel rotation velocity, i.¢. = 0. The instantaneous  The path of the bevel-tip needle can only follow curved
velocity of the needle tip can be represented in the bodyérarpaths with a minimum curvature = 1=r, as shown in Fig. 2.

O as For this reason, con gurations that can be reached by the
needle are locally constrained to be inside the volume of a

crateriform region (see Fig. 3) de ned locally by

. . r
When V2, is constant, i.e.y(t) and! (t) are constant, the q

con guration of the needle tip relative to the spatial frame Pz r R O R ®)
after being pushed for a time intervials

VP =[vT w']'=[0 0 v(t) v()=r 0 ' (] : (1)

with (px; py; Pz) the coordinates of a point in body fran@
gro (1) = gro (0)8\75’0 t. 2) Algorithm 1 requires.a deterministic sampling of the cohtro
space, whose resolution greatly affects the performance of
wheregpro (0) is the initial con guration of the needle framethe planning algorithm.[16]. A higher resolution leads to a



BUILD _RRT(S mt; Syoa) probability. With such an exploration strategy, an RRT can b

LT = To(Sin) constructed using the following algorithm.

2. while T \ Sgoai = ; Algorithm 2: (Forward RRT with random control space
3. Srand RANDOM _STATE() sampling) Initialize the treeT rooted atsj,; and randomly
g- ENDT EXTEND( T ; Sand) sample a collision free statgang in CSree. A reachable

neighbor search is applied to nd a set of stafg, from
which s;ang can be reached. After ndinGnear2 T, Which is

EXTEND( T Sand) the nearest neighbor sfang, We uniformly sample the control
1. Sreach REACHABLE _NEIGHBORS( T ;Sand ) space and apply all sampled control inputssi@, for t
2. Snear NEAREST _NEIGHBOR(S reach Srand) to generate a set of possible new stafs,. The nearest

3. (Snew; Unew) ~ NEW _STATE(S neas, Srand; U) neighbor ofS;ang iN Spew IS found assnew and added to the
4. T :add vertexSnew) 9 rand new new

5. T :add edge Snea; Snew Unew) tree. Such _explqration is rep_eat.ed. urdti' Sgoa 6 ; or the
6. RETURNT number of iteration reaches its limit.

The scenario of Algorithm 2 is shown in Table. I. By
growing the RRT with randomly sampled control inputs,
REACHABLE _NEIGHBORS( T ; Sand) Algorithm 2 probabilistically makes a trade-off betweer th

1. Forallsi 2T ; ;
2 if S is reachable froms complexity and the completeness of the exploration.

3. adds; to Sreach VI
4. RETURN Sreach

. ENTRY POINT PLANNING FOR STEERABLE NEEDLE
USING RRTS WITH BACKCHAINING

Con guration of the needle tip following the reversed tra-

NEW _STATE(S neas; Srand; U) jectory for constan¥/?, can be represented as
1. Uanda  CONTROL _SAMPLING( U)
2. FOR a.”U| 2 Urand t t)= t)e \l)FPO t. 6
. PO PO .
3. Snew(i) = Snear t Fanea(SiUi) t %o )= Go(t) ©)
4. Snew = [ i Snew(i) A path starting from the goal con guration can be describged a
5.Snew  NEAREST _NEIGHBOR(S new; Srand) a reverse path starting from the entry point with the negativ
6. Unew = Ui SUCh thals; = Snew control space. Given the target con gurati and the
7. RETURN Spew; Unew Ol space. 9 guratiGgoal :
ABLE | speci ed entry zoneSenry, Problem 2 can be solved using
RAPIDLY-EXPLORINGRANDOM TREES BASED PLANNER WITH CONTROL the fOIIQWIng algorlthm: L. T
SPACE SAMPLING Algorithm 3 (RRT with backchaining)tnitialize the tree

T rooted atsgea and randomly sample a collision free state
Srand IN CSyree- FOr @anysiang a reachable neighborho@kach

is computed. After ndingSpear 2 T, Which is the nearest
neighbor ofsiang, We uniformly sample the negative control
space U and apply all sampled control inputs e, for

t to generate a set of possible new sta#gs,. The nearest
neighbor ofsiang in Spew is found asspew and added to the
tree. Such exploration is repeated uffti\ Senyy 6 ; O the
number of iterations reaches its limit.

VII. SIMULATION RESULTS

We implement the proposed RRT based motion planning
Fig. 3. The crateriform reachable region of local needleiomot method for the steerable needle insertion in a 3D envi-
ronments with obstacles. Since we assume that the nee-
dle is to be inserted from outside of the tissue, we only
more detailed exploration with more complexity, but a loweronsider workspace with positive-axis. The workspace is
resolution leads to a fast exploration with less infornmatiode ned to be a cubical region with coordinatés 5;5)
on the connectivity and structure of the free space. Inste@d5;5) (0;10), and we use six unit-radius spherical ob-
of using the deterministic discretization of the controasp, stacles as shown in Fig. 1, which are centered at the
we sample a set of control inputs uniformly in the contrgbositions (0;0;4),( 1:5;0;8:5), ( 2:9;0;7:5), ( 2;0;5:5),
space, using CONTRQISAMPLING(), within a prede ned ( 0:3;1:4;55) and( 0:3; 1:4;5:5), to approximate obsta-
range[Vmin; Vmad  [! min; ! max], @and apply all sampled controlcles around real prostate, such as the urethra, the pedile bu
inputs tospearfor t to generate the set of possible new statesd the pubic arch. The maximal number of iterations is
Shew- By doing so, we not only explore the RRT toward alL0000. Simulations are run on a laptop with Intel Centrino
possible directions with same probability, but also extdml 1.66 MHz, 1 GB memory, and Microséft Windows XP
RRT toward the sampled states by various depth with samperation system.



Fig. 4. Algorithm 1: (a) The exploration of the basic RRT; {f)e feasible
path found by the basic RRTs method.

10

Fig. 7. Algorithm 3: (a) Exploration of one RRT with backchiaig; (b)

Fig. 5. Algorithm 2: (a) Exploration of the forward RRTs witontrol ~Feasible path found by the RRT with backchaining.
space sampling; (b) Feasible path found by forward RRTs watlitrol space
sampling.

position at( 0:006 0:011;9:991), and Fig. 5(b) shows the
RRT exploration with Algorithm 2 in the free space.

First, we implement Algorithms 1 and 2 to solve Problem 1 Second, we consider insertion task in the same environ-
for an insertion task from entry poig®; 0; 0) with orientation ment, and the target con guration is set to pel:5;0; 9:7).
(0;0;0) to reach the target zone which is a ball located &@ince the target is very close to one of the obstacles and
(0;0; 10) with radius 0:01. The range of the control inputsthe obstacle is in the middle of the way between the entry
are de ned by insertion depth if0:1; 0:5] and rotation angle point and the target zone, it is difcult to nd a feasible
in [0;2 ], and the grid size of control space deterministipath for this task. We rst formulate it as Problem 1 and
sampling is0:1. Totally 10 trials have been done with bothimplement Algorithm 2 to solve it. The entry con guration is
Algorithms 1 and 2. With Algorithm 15 trials successfully with position (0;0;0) and orientation( ;5l;[ =;3];0),
found feasible paths withirl000O iterations. The averageand the target zone is a ball located (at1:5;0; 9:7) with
number of iterations for the RRT to reach the target regigadius 0.001. Totally, 5 trials have been done, but none of
with deterministic control space samplinglig985, with the them can nd a feasible path in 10000 iterations. Fig. 6 shows
minimum at148and the maximum &50Q The average CPU one of the explorations of such RRTs. Then we formulate it
time used is18518 second. Fig. 4(a) shows the exploratioms Problem 2 and implement Algorithm 3 to solve it. The
of one of the basic RRTs with 2362 iterations, and Fig. 4(Bame target con guration is used and the entry region is the
shows the feasible path found with this RRT, which nallyx y plane withz = 0. Totally 5 trials have been done, and alll
reached the position §0:021; 0:023 9:95).

With Algorithm 2, control inputs are uniformly sampled

with insertion depth if0:1; 0:5] and rotation angle ifi0; 2 ]. ﬁf;g?rmof Al 110 120
All trials successfully found feasible paths. The averagen NuUmber of SUCCESSes 5 10
ber of iterations that the RRT with random control space Average Number of iteration$ 1798.5 | 1339.3
samplings take to reach the target region is 1339.3, with the Average CPU time (s) 1851.8| 621.4
minimum at 142 and the maximum at 3748. The average TABLE Il

CPU time used i$21:4 second. Fig. 5(a) shows the feasible PERFORMANCE OFALGORITHMS1 AND 2 FOR SOLVINGPROBLEM 1.
path found by this motion planner, which nally reached the



successfully nd feasible entries points and paths. Theaye [3]
number of iterations that the RRT with backchaining uses to

nd a feasible entry point i2796 with a minimum at112

and a maximum a638 and the average CPU time used is[4]
1952 second. Fig. 7(a) shows exploration of one of the RRTs

in the free space, and Fig. 7(b) shows the feasible path found
by this with backchaining. [5]

Algorithm 2 3

Number of trials 5 5 6
Number of successes 0 5 [6]
Average Number of iteration$ 10000 | 279.2

Average CPU time (s) N/A | 195.2 [71

TABLE Il
PERFORMANCE OFALGORITHM 2 AND 3 FOR A DIFFICULT TARGET
CONFIGURATION.

(8]

[
VIII. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a novel RRT-based motion pla{ﬁ(—)]
ning method for bevel-tip steerable needle in 3D environmen
This method used randomly sampled control space insteadisf
the classic deterministic one to explore a tree in the waksp
which probabilistically makes a trade-off between expiora
complexity and exploration completeness. We also addies$&’]
feasible entry point planning problem and proposed a method
using RRT with backchaining to solve this problem. Thigg;
algorithm provides a quick search toward the entry zone in
C-space with its RRT structure. Although no entry point could
be found within limited iterations for some very dif cult [14]
goal con guration, it can easily nd feasible entry pointad
corresponding paths for most goal con gurations because
entry zone is much less constrained. Finally, we provided
simulations to explore performance of the proposed motidf]
planners.

In this paper, we only consider motion planning for steezabj; 7]
needle in stiff 3D environment with spherical obstacles. In
future work, we will explore this problem in deformable®!
environments with obstacles of more complex shapes. Also,
we will consider insertion tasks whose initial and goal dend(19]
tions are both speci ed by a zone in the con guration space.
Moreover, another important factor of the 3D steerable leeegbq)
motion planning, uncertainties in sensing and motion, bl

taken into account in future work too. 21]
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