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Abstract— Sampling perturbations in shape, state, and con-
trol can facilitate grasp planning in the presence of uncertainty
arising from noise, occlusions, and surface properties such as
transparency and specularities. Monte-Carlo sampling is com-
putationally demanding, even for planar models. We consider
an alternative based on the multi-armed bandit (MAB) model
for making sequential decisions, which can apply to a variety
of uncertainty models. We formulate grasp planning as a “bud-
geted multi-armed bandit model” (BMAB) with finite stopping
time to minimize “simple regret”, the difference between the
expected quality of the best grasp and the expected quality of
the grasp evaluated at the stopping time. To evaluate MAB-
based sampling, we compare it with Monte-Carlo sampling for
grasping an uncertain planar object defined by a Gaussian
process implicit surface (GPIS), but the method is applicable to
other models of uncertainty. We derive distributions on contact
points, surface normal, and center of mass and use these solve
the associated MAB model, finding that it computes grasps of
similar quality and can reduce computation time by an order of
magnitude. This suggests a number of new research questions
about how MAB can be applied to other models of uncertainty
and how different MAB solution techniques can be applied to
further reduce computation.

I. INTRODUCTION

Consider a robot packing boxes in a shipping warehouse
environment, where it may frequently encounter new con-
sumer products and need to process them quickly. The robot
may need to rapidly plan grasps for these objects without
prior knowledge of their shape, pose and even material
properties like friction coefficient or center of mass. Due
to sensor noise and missing data due to partial visibility and
object properties such as transparency, the robot may not
be able to measure these quantities exactly. Grasp planners
that assume prior knowledge of object geometry or an exact
measurement of pose may fail in this environment.

Grasp quality metrics have been developed to determine
if a grasp will be successful or not and how much force
it needs to exert to resist an opposing force, however most
of them evaulate a grasp assuming all the parameters are
known [9]. This motivates using knowledge of uncertainty to
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Fig. 1: Convergance in regret of the bandit sampling method (red), compared
to the traditional Monte-Carlo method. The fast convergence of the bandit
method is due to its ability to intelligently pick what grasp to sample next
in a given set of proposed grasps on an object with shape uncertainty

select grasps, but most methods for evaluating the quality of
a single grasp in the presence of uncertainty require use of an
exhaustive sampling over the possible values of the uncertain
quantity [15], [36]. To select a grasp with high quality this
evaluation is often performed for a large set of potential
grasps, which can be very time-consuming. However, when
evaluating a set of grasps we may be able to determine the
difference of quality between grasps with only a few samples
and throw away grasps that are likely to be suboptimal [13].
Thus, we can adaptively concentrate grasp quality evaluation
on the grasps that are most likely to have the highest quality
based on the evaluation done so far.

The multi-armed bandit (MAB) model for sequential de-
cision making problems [3], [17], [27] provides a way to
reason about selecting the next grasp to evaluate and the
grasps to discard from consideration. The goal in a MAB
model is to make a sequence of decisions over a set of
possible options such that a measure of the expected reward
of such decisions is maximized. Solutions to the MAB
model are particularly useful in applications where it is too
expensive to fully evaluate a set of options; for example, in
optimal design of clinical trials [30], market pricing [29],
and choosing strategies for games [32]. The budgeted multi-



armed bandit model [20] is a specialization of the MAB
model with a finite stopping time where the objective is to
maximize the expected reward of the decision made at the
stopping time, or equivalently to minimize “simple regret”,
which is the difference between the true expected reward
of an optimal arm and the true expected reward of the arm
pulled at the stopping time.

Our main contribution in this paper is formulating the
problem of planning grasps with a high expected quality
in the presence of uncertainty as a budgeted multi-armed
bandit model. We use this formulation to rank a set of
potential grasps by expected Ferrari-Canny quality [9] under
shape uncertainty. We use a budgeted multi-armed bandit
model since we would like to execute only one grasp plan
after evaluating the expected quality of many potential grasp
plans. We choose the model of uncertainty to be a Gaussian
process implicit surface (GPIS), a Bayesian representation
of shape uncertainty that seen recent use in various robotic
applications [8], [11], however the method applies to any
model of uncertainty that can be sampled. We also show how
to estimate distributions on the contact points and surface
normals and center of mass using a GPIS shape represen-
tation. We then leverage these distributions to reduce the
computational complexity of sampling from the GPIS model
from O(n6) to O(n3), where the workspace is discretized
as a n×n grid. Our experiments demonstrate that using the
MAB sampling method improves the time to rank a set of
1000 grasps by 10x, an order of magnitude improvement,
over the baseline Monte-Carlo approach. These promising
results suggest that our MAB approach could be used on
other types of uncertainty, such as pose, friction coefficent or
center of mass and provide significant speed improvements.

II. RELATED WORK

Past work on grasping under uncertainty has considered
state uncertainty [10], [33], uncertainty in contact locations
with an object [38], uncertainty in object pose [7], [36],
[15]. The effect of uncertainty in object geometry on grasp
selection has been studied for spline representations of
objects [7], extruded polygonal mesh models [13], [14], and
point clouds [12].

Currently, the most common method of evaluating the
expected grasp quality under uncertainty is to rank a set of
random grasps on an object using samples on shapes, pose
or parameters to evaluate a quality measure [7], [13], [14].
Monte-Carlo sampling involves drawing random samples
from a distribution to approximate an expected value[6],
which can be slow when the distribution is high-dimensional,
such as for distributions on possible shapes. To address
this, Kehoe et al. [13] demonstrated a procedure for finding
a minimum bound on expected grasp quality given shape
uncertainty, which reduced the number of terms needed in
Monte-Carlo sampling in order to choose the highest quality
grasps. The adaptive sampling pruned grasps using only
the sample mean and did not utilize any estimates of how
accurate the current sample mean is. Laaksonen et al. [16]
used Markov Chain Monte-Carlo (MCMC) sampling to

estimate grasp quality and object pose under shape and pose
uncertainty. MCMC simplified sampling from a complicated
joint distribution on pose and shape, but it can be slow to
converge to the correct distribution [2].

We chose to study our MAB sampling method for shape
uncertainty using a Gaussian process implicit surface rep-
resentation. Our decision to use this uncertainty model is
based on GPIS’s ability to combine various modes of noise
observations such as tactile, laser and visual [25], [37], [8]
and its recent use in modeling uncertainty for a number of
robotic applications. Hollinger et al. used GPIS as a model
of uncertainty and performed active sensing on the hulls in
underwater boats [11]. Dragiev et al. showed how GPIS can
enable a grasp controller on the continuous signed distance
function [8]. Mahler et al. used the GPIS representation
to find locally optimal anti-podal grasps by framing grasp
planning as an optimization problem [21].

III. MULTI-ARMED BANDIT MODEL

The multi-armed bandit model, originally described by
Robbins [28], is a statistical decision model of an agent
trying to make correct decisions, while gathering information
at the same time. The traditional setting of a multi-armed
bandit model is a gambler that has K independent slot
machine arms and decides what machines to play, how
many times to play each one, what order to play them in.
A successful gambler would want to exploit the machine
that currently yields the highest reward and explore new
arms to see if they give better rewards. Developing a policy
that successfully trades between exploration and exploitation
has been the focus of extensive research, since the problem
formulation [5], [27], [4]. Solutions to the multi-armed bandit
model have been used in applications for which evaluating
all possible options is expensive or impossible, such as the
optimal design of clinical trials [30], market pricing [29],
and choosing strategies for games [32].

There are a number of algorithms for developing policies
to balance exploration and exploitation. One algorithm is
ε−greedy, which is the idea of choosing the arm with the
highest empirical expected reward with 1− ε probability and
choosing a random arm with probability ε [3]. A class of
algorithms that have stronger theoretical guarantees are from
the Upper Confidence Bound (UCB) family. UCB algorithms
maintain the empirical expected reward based off of pulling
each arm multiple times, while also estimating an upper
bound on the true expected reward using assumptions on
the probability distribution of rewards and number of times
each arm has been sampled. The algorithm chooses the next
option based on Thompson sampling [1] or the Gittins index
policy [35]. When the rewards come from exponential family
distribution, UCB minimizes cumulative regret, which is the
sum over each sub-optimal arm of the number of times that
arm is pulled times the difference between the true expected
reward of an optimal arm and the true expected reward of
that sub-optimal arm.

In the grasping context, one is only interesting in choosing
the best grasp at the end of an exploration cycle. We can



formulate our problem as a “budgeted multi-armed bandit
model” [20]. The budgeted multi-armed bandit model fo-
cuses on efficiently exploring the arms until a finite stopping
time is reached. The objective of the budgeted multi-armed
bandit model is to minimize the “simple regret”, which is the
difference between the true expected reward of an optimal
arm and the true expected reward of the arm pulled at the
stopping time. Thus the budgeted multi-armed bandit model
reduces to exploration until the very last time step, at which
time one exploitation step is taken.

IV. PRELIMINARIES AND PROBLEM DEFINITION

Before we present the problem definition, we introduce
a way to evaluate the quality of a grasp and our grasping
model, the line of action.

A. Grasp Metric

In their work over two decades ago Ferrari and Canny
[9], demonstrated a method to rank grasps by considering
their contact points and surface normals. Importantly the
magnitude of Q yields a measurement that allows one to rank
grasps by their physical stability and evaluate the property of
force-closure. Furthermore, it has wide spread use in grasp
packages like GraspIT[22], OpenGrasp[18] and Simox [34],
which motivates studying its effect with uncertainties.

The L1 version of the metric works by taking as input the
contact points c1, ..., cm, surface normals n1, ...,nm, center
of mass z and friction coefficient µ. Then constructing a
convex hull around the wrenches made up of those param-
eters and finding the radius of the largest unit ball centered
at the origin in wrench space. A wrench is defined as
concatenation of a force and torque vector. If the convex hull
does not enclose the origin, the grasp is not in force-closure.
Thus a grasp can be parameterized by the following tuple
g = (c1, ..., cm,n1, ...,nm, µ, z), our method is applicable to
all grasp metrics that represent a grasp as the tuple g, such
as [7], [19].

Since we are in an uncertain environment, we are inter-
ested in calculating the expected quality, or E(Q). E(Q)
is computed by sampling from our distributions on pose,
shape or material properties (friction coefficient or density)
and averaging the qualities that are computed. Reducing the
time to find the best expected grasp from a set of a large
number of grasps is the primary focus of the paper.

B. Line of action

In an uncertain environment one would not actually know
the true g, thus we have to work with the trajectory of the
gripper. Similar to the work of [7], we assume that each
gripper finger approaches along a line of action, a 1D curve
γ(t) with endpoints a and b as seen in Fig. 2. A gripper
finger starts at point a and moves towards b, we assume a
is far enough away to be collision free of the object. Each
gripper contact is defined by a line of action, so we assume
the following tuple is provided Γ = (γ1(·), ..., γm(·)), which
designates a proposed grasp plan.

Fig. 2: Illustration of a grasp plan Γ composed of two lines of action, γ1(t)
and γ2(t)

While we currently assume the gripper moves free of
noise, this approach would be applicable to high precision
robots such as industrial robots. Future work will look at
how to efficiently sample when the approach trajectory has
noise.

C. Problem Definition

Given a 2-D workspace W , with an unknown object
represented as a trained GPIS model, which we describe in
Section VI-A and set of possible grasp plans G. We are
interested in determining

Γ∗ ∈ argmaxΓ∈GE(Q(Γ)) (1)

with respect to a chosen grasp metric Q.

V. MULTI-ARMED BANDITS FOR GRASP SELECTION

While a standard approach to solving the problem in Eq. 1
would be to perform Monte-Carlo integration on each Γi and
compute the expected grasp quality, we propose treating the
problem as a multi-armed bandit model and forming a policy
for selecting which grasp to sample. In our setting, we have a
probabilistic shape representation and would like to evaluate
many potential grasps on that shape model. Motivated by
limited computational resources we are interested in how to
intelligently allocate sampling resources to efficiently find
the best grasp plan Γ∗. Here each arm corresponds to a
different grasp plan and pulling the arm is sampling the
shape representation and evaluating the arm’s grasp plan on
the sampled shape representation. The reward for pulling
an arm is the grasp quality of the resulting grasp on the
sampled shape. We have a policy for exploration of different
grasp plans (i.e. choosing which one to sample next) and at a
given stopping time we choose to execute the grasp plan with
the highest expected quality based on the samples received
so far, which would correspond to actually performing the
grasp. The number of samples needed before the simple
regret reaches zero, determines how effective an exploration
policy is for grasp evaluation.

In solving Eq. 1, we want to pick the grasp plan with the
highest E(Q(Γ)) determined via Monte-Carlo Integration.
Due to the non-linear nature of our grasp metric, we currently
do not have a way to represent the distribution on grasp
quality of p(Q(Γ)) in closed form, which limits the bandit
algorithms available to us.



For our exploration policy, we chose to use a method
called successive elimination. We maintain a subset of the
possible grasp plans that are statistically indistinguishable
from the best grasp plan. During exploration, we sample
uniformly from this subset. This has been shown to have
good performance when the number of evaluations is large
[5]. For each grasp plan, we maintain a 95% confidence
interval around the expected quality of the grasp plan. The
width of the confidence interval for a grasp plan Γi that
has been sampled ni times and the samples have standard
deviation σi is:

Ci :=
1.96σi√
ni

. (2)

Let µ̂i be the sample mean of the grasp quality for grasp
plan i. Then the confidence interval for grasp plan i is
[µ̂i − Ci, µ̂i + Ci] [6]. After a sample from a grasp plan,
we check to see if the confidence interval of the sampled
grasp intersects with the confidence interval of the current
best grasp plan, and if it does not, we prune that grasp plan
from the current active set of grasp plans. Since we prune
grasps that are below a confidence interval we have statistical
guarantees unlike earlier approaches to this problem [14].
In future work, we will look at using other exploration
strategies.

VI. EVALUATING A GRASP ON GAUSSIAN PROCESS
IMPLICIT SURFACE

In order to solve our problem definition, we must evaluate
E(Q(Γ)) for a given grasp plan Γ. We will first discuss
how the GPIS is constructed, then which grasp metric Q we
chose and lastly proceed into evaluating the expectation E
efficiently.

A. Gaussian Process (GP) Background

We refer the reader to [21] for a more detailed explanation
of the GP construction, which we summarize here. Given the
training data D = {X ,y} and covariance function k(·, ·), the
posterior density p(sd∗|x∗,D), or the distribution on signed
distance field, at a test point x∗ is shown to be [26]:

p(sd∗|x∗,D) ∼ N
(
µ(x∗),Σ(x∗)

)
µ(x∗) = k(X ,x∗)ᵀ(K + σ2I)−1y

Σ(x∗) = k(x∗,x∗)− k(X ,x∗)ᵀ(K + σ2I)−1k(X ,x∗)
)

where K ∈ Rl×l is a matrix with entries Kij = k(xi,xj)
and k(X ,x∗) = [k(x1,x∗), . . . , k(xl,x∗)]

ᵀ. This derivation
can also be used to predict the mean and variance of the
function gradient by extending the kernel matrices using the
identities [31]:

cov (sd(xi), sd(xj)) = k(xi,xj) (3)

cov
(
∂sd(xi)

∂xk
, sd(xj)

)
=

∂

∂xk
k(xi,xj) (4)

cov
(
∂sd(xi)

∂xk
,
∂sd(xj)

∂xl

)
=

∂2

∂xk∂xl
k(xi,xj) (5)

For our kernel choice we decided to use the square
exponential kernel, similar to [8]. Other kernels relevant to
GPIS are the thin-plate splines kernel and the Matern kernel
[37].

We construct a GPIS by learning a Gaussian process to
fit measurements of a signed distance field of an unknown
object. Precisely, xi ∈ R2 in 2D and xi ∈ R3 in 3D, and yi ∈
R is a noisy signed distance measurement to the unknown
object at xi.

B. Calculating the Expected Grasp Quality

Given a proposed grasp plan Γ, the expected grasp quality
can be evaluated as follows:

E(Q(Γ)) =

∫
Q(g|S,Γ)p(S)dS (6)

Where Q(g|S,Γ) is the grasp quality that is computed on a
shape sample drawn from p(S). To compute this we intersect
the zero crossing of the level set with the propose grasp
plan Γ and determine the parameters g, this has been the
approach taken in previous work [13], [14], [7]. See Fig. 3
for an example of what samples drawn from p(S) induced by
GPIS look like. For computational reasons we approximate
the integral via Monte-Carlo Integration. We use importance
sampling to draw from the distribution induced by GPIS and
calculate the following

E(Q(Γ)) ≈ 1

N

N∑
i=1

Q(g|Si,Γ), Si ∼ p(S)

To compute the above distribution we must draw samples
from p(S). In order to draw shape samples from a GPIS, one
needs to sample from signed distance function, sd, over the
joint on all points in the workspace W or p(sd(W)). Since
this is a GPIS, we know the following

p(S) = p(sd(W)) ∼ N(µ(W),Σ(W)) (7)

Thus if the workspace is an n×n grid, the joint distribution
is an n2 multi-variate Gaussian, due to sd : R2 → R.
Sampling from a Gaussian involves inverting the covariance
matrix and inversion is in the naive way scales with the cube
of the number of input dimensions [24]. Thus the complexity
of this operation is O(n6) in 2D and O(n9) in 3D.

To reduce complexity we propose sampling not from
the shape distributions, but instead from the distributions
on the grasps parameters themselves. We recall that a
grasp according to our metric is defined as the tuple g =
(c1, ..., cm,n1, ...,nm, µ, z). We are thus interested in cal-
culating p(g|Γ, µ(x),Σ(x)). The distribution on a grasp is
defined then as:

p(g) = p
(
c1, ..., cm,n1, ...,nm|Γ, µ(x),Σ(x)

)
(8)

We note here that we currently use the friction coefficient
µ and the expected center of mass z̄ as deterministic values.



Fig. 3: Shape samples drawn from Eq. 7 on the object in the upper left
corner. Given a shape sample we highlight the zero-crossing of the level set
in black

For grippers that do not approach along the same line of ac-
tion (i.e. non-parallel jaw grippers) we make the assumption
that each contact and normal pair is independent, or

p(g) =

m∏
i=1

p
(
ci,ni|γi(t), µ(x),Σ(x)

)
(9)

We compute the expected grasp quality now as follows:

E(Q(Γ)) =
1

N

N∑
i=1

Q(gi), gi ∼ p(g) (10)

We will now show how these distributions can be com-
puted and how the computational complexity for sampling
from a grasp plan is reduced from O(n6) to O(n3) for a
GPIS model.

VII. DISTRIBUTION OF GRASP PARAMETERS

To sample from p(g), we need to sample from
the distributions associated with a line of action
p(ni, ci|γi(t), µ(x),Σ(x)). Using Bayes rule we can
rewrite this as

p(ni, ci|γi(t), µ(x),Σ(x)) =

p(ni|ci, γi(t), µ(x),Σ(x))p(ci|γi(t), µ(x),Σ(x))

In section VII-A, we look at how to sample from
p(ci|γi(t), µ(x),Σ(x)). Then in section VII-B, we look at
how to sample from p(ni|ci, γi(t), µ(x),Σ(x)) and present
a novel visualization technique for the distribution on surface
normals. Lastly in section VII-C, we show a way to calculate
the expected center of mass assuming a uniform mass
distribution. .

A. Distribution on Contact Points

We would like to find the distribution on contact point
ci. A contact point in terms of the GPIS and line of action
model can be defined as the point, t, when the signed distance
function is zero and no points before said point along the line
have touched the surface. We express this as the following
conditions:

sd(γ(t)) = 0 (11)
sd(γ(τ)) > 0, ∀τ ∈ [a, t) (12)

We will now demonstrate how to efficiently sample from
p(ci|µx,Σx, γit)

The probability distribution along the line γ(t) is given
by:

p
(
sd(γ(t));µ(t),Σ(t)

)
∀t ∈ [a, b] (13)

This gives the signed distance function distributions along
the entire line of action in the workspace as a multivariate
Gaussian. One could think of this as a marginalization of all
other points in signed distance field except the line of action.
To sample contact points, one can draw samples from Eq. 2
and iterate from a to b until they reach a point that satisfies
Eq. 11 and Eq. 12.

B. Distribution on Surface Normals
Using Eq. 4 and Eq. 5, we can compute the mean of the

gradient µ∇(x) and the covariance of the gradient Σ∇(x)
respectively. Thus we can compute the distribution around
the surface normal for a given point in W . We can now
write

p
(
ni|ci = γ(t)

)
= p
(
ni|µ(γ(t)),Σ(γ(t))

)
One interesting effect of this technique is that we can

now marginalize out the line of action model and visual
what the surface normal distribution is along a given line
of action. To our knowledge this is the first attempt to visual
surface normals along a grasp plan. Marginalization can be
performed as follows:

p(ni) =

∫ b

a

p
(
ni = v|ci = γ(t)

)
p
(
ci = γ(t)

)
dt (14)

Grasp metrics such as Ferrari-Canny require ni be nor-
malized, or, equivalently, a member of the sphere Sd−1 [9].
To account for this we densely sample from the distribution
p
(
ni)
)

and project onto Sd−1. In Fig.4, we visualize the
distribution on ni calculated for a given GPIS and approach
line of action.

C. Expected Center of Mass

We recall the quantity P (sd(x) < 0) =
∫ 0

−∞ p(sd(x) =
s | µ(x),Σ(x))ds is equal to the probability that x is interior
to the surface under the current observations. We assume that
the object has uniform mass density and then P (sd(x) < 0)
is the expected mass density at x. Then we can find the
expected center of mass as:

z̄ =

∫
W xP (sd(x) < 0)dx∫
W P (sd(x) < 0)dx

(15)

which can be approximated by sampling W in a grid
and approximating the spatial integral by a sum. Since this
operation involves the entire SDF, one would want to use
a low resolution grid for computational efficiency. We show
the computed density and calculated expected center of mass
for a marker in Fig. 5.



Fig. 4: (Left to Right): Line of action for a given gripper on an uncertain surface representing a measuring cup. Visualization technique comes from [21].
Distribution p(c) as a function of t, the position along the line of action γ(t). The two modes correspond to the different potential contact points, either
the handle or the base of the cup. Lastly, the distribution on the surface normals (inward pointing) along γ(t) described by equation 14. We plotted the
probability mass along the unit circle, to reflect the normalization of the surface normals.

Fig. 5: Left: A surface with GPIS construction and expected center of mass
(black X) Right: The distribution on the density of each point assuming
uniform density

D. Complexity Analysis on Sampling From Grasps Distribu-
tions

After deriving each distribution, we can now sample
along each line of action γi(t) from the joint distribution
p(ci,ni|γi(t)), due to our independence assumption Eq. 9.
This can be done by drawing samples from the GP for
signed distance and normals simultaneously and using our
projection technique for the normal distribution.

Having a distribution along a line of action model allows
us to sample from those instead of the joint distribution
p(sd(W)). Assuming the number of discretization points
along the line of action is n, sampling from this distribution
for a single grasp is O(n3). However, each proposed grasp
plan Γ requires the distribution to be computed, so if we
have T = |G| then the complexity is O(Tn3). In practice,
this should be much smaller than O(n6).

VIII. EXPERIMENTS

For the experiments below we used common household
objects. The objects used can be found at http://rll.
berkeley.edu/grasping/ We manually created a 25 x
25 grid, by tracing a point cloud of the object on a table taken
with a Primesense Carmine depth sensor. To accompany the
SDF, we created an occupancy map, which holds 1 if the
point cloud was observed and 0 if it was not observed,
and a measurement noise map, which holds the variance 0-
mean noise added to the SDF values. The parameters of the

GPIS were selected using maximum likelihood on a held-out
set of validation shapes. Our visualization technique follows
the approach of [21] and consisted of drawing many shape
samples from the distribution and blurring accordingly to a
histogram equalization scheme.

We did experiments for the case of two hard contacts in
2-D, however our methods are not limited to this implemen-
tation. We drew random lines of actions γ1(t) and γ2(t)
by sampling around a circle with radius

√
2n and sampling

the circles origin, then projecting onto the largest inscribing
circle in the workspace.

A. Multi-Armed Bandit Experiments

We consider the problem of selecting the best grasp plan,
Γ∗ out of a set G. For our experiments we look at selecting
the best grasp out of a size of |G| = 1000. In Fig. 6, we
plotted the simple regret for three of the shapes in our data
set averaged over 100 runs and compare it to the Monte-
Carlo method that randomly chooses a grasp plan to draw a
sample from. We initialize both the Monte-Carlo and bandit
technique by sampling each grasp 2 times. This is to seed
the standard deviation. We draw samples from our calculated
distributions p(g). Interestingly, regret is minimized at least
an order of magnitude faster than the baseline approach for
the shapes we considered, thus motivating the use of sampled
observations to choose what to sample next.

B. Sampling from Grasps vs. Shape

We first tested 1000 grasp plans and sampled each one
5000 times and measured the RMS error between converged
expected grasp plan qualities for sampling shape Eq. 6 vs.
grasps Eq. 10 was 0.004. After confirming the distributions
converged close to the same value, we show the computa-
tional complexity in Fig. 7 of the two methods for evaluating
100 grasps on an n× n grid.

IX. LIMITATIONS

Our budgeted multi-armed bandit approach appears
promising, but we still do not know how well it will perform
on 3D shapes and large scale grids. Future work will be
building an efficient construction of GPIS to scale to 3D
and test the bandit method there. While we have seen the

http://rll.berkeley.edu/grasping/
http://rll.berkeley.edu/grasping/


Fig. 6: Top: Comparison of two sampling methods. Red is the multi-armed bandit method that actively chooses which one to sample and Blue is the
Monte-Carlo method. We measure their ability to converge in terms of simple regret averaged over 100 runs. We had them determine the best grasp when
|G| = 1000. In all cases the bandit method converges a least a magnitude faster than the pure Monte-Carlo integration. Bottom: Three objects from our
data set that we tested on (Tape, Loofa, Water Bottle), we used a visualization technique described in [21]

Fig. 7: Time it took to sample from 100 grasp distributions for a given
resulution of the workspace. Blue line is sampling from p(sd(R)) or shapes
and Red is sampling from p(g) or the calculated distribution on grasps. As
you can see sampling from the calculated distributions scales much better.

bandit method always converge to the correct value in our
experiments, our method only has a statistical guarantee of
doing so. A non-optimal grasp plan could be found, albeit
with a low probability.

Sampling from our distribution p(g) over p(S) yields a
reduction in computationally complexity, but only if the num-
ber of grasps one wants to evaluate remains small relative to
n3, techniques to ensure this could be to find locally optimal
potential grasps using optimization approaches [21].

An additional problem is that we only have an expected
center of mass and not a distribution on the center of mass.
This might prove to be to expensive to compute, however

recent work by Panahi et al. showed a way to bound the
center of mass for convex parts. Extension of his work to
implicit surfaces could be of possible interest [23]. When
using the shape sampling approach on the GPIS instead of
sampling along the grasp plan trajectory, the center of mass
is easy to compute on a sampled shape, so this is a limitation
of our sampling method.

X. CONCLUSION

Assessing grasp quality under shape uncertainty is compu-
tationally expensive as it often requires repeated evaluations
of the grasp metric over many random samples. In this work,
we proposed a multi-armed bandit approach to efficiently
identify high-quality grasps under shape uncertainty. A key
insight from our work is that uniformly allocating samples to
grasps is inefficient, and we found that the Successive Elim-
ination multi-armed bandit approach prioritizes evaluation of
high-quality grasps while quickly pruning-out obviously poor
grasps. A pre-requisite for applying a bandit approach is to
formulate an efficient representation of how shape uncer-
tainty affects grasp parameters and thus grasp quality. We
modeled uncertainty with Gaussian process implicit surfaces
(GPIS) and derived the distribution of grasp parameters when
a nominal grasp is applied to the GPIS. As a result, we were
able to more efficiently sample from a distribution of grasps
executions rather than the shape; leading to a complexity
improvement of n3 in the resolution of the discretization n.
We evaluated this theoretical model on a dataset of common
objects and confirmed that: (1) the bandits approach always
converged to the best grasp in the candidate set, (2) it
converges on average an order of magnitude faster than



a uniform sampling approach in our experiments, and (3)
sampling from the grasp contacts is 12x faster than sampling
from shapes for a 64x64 grid.

XI. FUTURE WORK

Our results are promising and they suggest many avenues
of future work. By utilizing the BMAB model, we can
encode uncertainty in the grasp parameters and then leverage
the existing algorithms to efficiently find the best grasp.

In principle, our method can be applied to other rep-
resentations of shape uncertainty such as perturbations on
polygonal vertices [13] or splines [7]. It can further be
applied to other grasp quality metrics or simulation based
evaluation methods [18].

Future work will also consider applying BMAB approach
to grasp planners like GraspIt! [22] to see if our method can
handle uncertainty while working under the time constraints
needed for most real time applications. We currently have
only tested one bandit algorithm, successive elimination.
While our results are promising, it remains to be seen how
well it deals with the increased complexity of 3D models
over 2D models and larger scale experiments. However, the
BMAB model has a large amount of literature to draw from
as we encounter new and more challenging problems [4].
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[4] D. Bergemann and J. Välimäki, “Bandit problems,” Cowles Founda-
tion for Research in Economics, Yale University, Tech. Rep., 2006.

[5] S. Bubeck, R. Munos, and G. Stoltz, “Pure exploration in multi-armed
bandits problems,” in Algorithmic Learning Theory. Springer, 2009,
pp. 23–37.

[6] R. E. Caflisch, “Monte carlo and quasi-monte carlo methods,” Acta
numerica, vol. 7, pp. 1–49, 1998.

[7] V. N. Christopoulos and P. Schrater, “Handling shape and contact
location uncertainty in grasping two-dimensional planar objects,” in
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on. IEEE, 2007, pp. 1557–1563.

[8] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2011, pp. 2845–2850.

[9] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), 1992, pp. 2290–2295.

[10] K. Y. Goldberg and M. T. Mason, “Bayesian grasping,” in Robotics and
Automation, 1990. Proceedings., 1990 IEEE International Conference
on. IEEE, 1990, pp. 1264–1269.

[11] G. A. Hollinger, B. Englot, F. S. Hover, U. Mitra, and G. S. Sukhatme,
“Active planning for underwater inspection and the benefit of adaptiv-
ity,” Int. J. Robotics Research (IJRR), vol. 32, no. 1, pp. 3–18, 2013.

[12] K. Hsiao, M. Ciocarlie, and P. Brook, “Bayesian grasp planning,” in
ICRA 2011 Workshop on Mobile Manipulation: Integrating Perception
and Manipulation, 2011.

[13] B. Kehoe, D. Berenson, and K. Goldberg, “Estimating part tolerance
bounds based on adaptive cloud-based grasp planning with slip,” in Au-
tomation Science and Engineering (CASE), 2012 IEEE International
Conference on. IEEE, 2012, pp. 1106–1113.

[14] ——, “Toward cloud-based grasping with uncertainty in shape: Esti-
mating lower bounds on achieving force closure with zero-slip push
grasps,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on. IEEE, 2012, pp. 576–583.

[15] J. Kim, K. Iwamoto, J. J. Kuffner, Y. Ota, and N. S. Pollard,
“Physically-based grasp quality evaluation under uncertainty,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 3258–3263.

[16] J. Laaksonen, E. Nikandrova, and V. Kyrki, “Probabilistic sensor-based
grasping,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 2019–2026.

[17] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[18] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner, and R. Dillmann, Open-
GRASP: A Toolkit for Robot Grasping Simulation, ser. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2010, vol. 6472,
pp. 109–120.

[19] Z. Li and S. S. Sastry, “Task-oriented optimal grasping by multifin-
gered robot hands,” Robotics and Automation, IEEE Journal of, vol. 4,
no. 1, pp. 32–44, 1988.

[20] O. Madani, D. J. Lizotte, and R. Greiner, “The budgeted multi-armed
bandit problem,” in Learning Theory. Springer, 2004, pp. 643–645.

[21] J. Mahler, S. Patil, B. Kehoe, J. van den Berg, M. Ciocarlie,
P. Abbeel, and K. Goldberg, “Gp-gpis-opt: Grasp planning under shape
uncertainty using gaussian process implicit surfaces and sequential
convex programming,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on. IEEE, 2015.

[22] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic
grasping,” Robotics & Automation Magazine, IEEE, vol. 11, no. 4, pp.
110–122, 2004.

[23] F. Panahi and A. F. van der Stappen, “Bounding the locus of the center
of mass for a part with shape variation,” Computational Geometry,
vol. 47, no. 8, pp. 847–855, 2014.

[24] K. B. Petersen, “The matrix cookbook.”
[25] C. Rasmussen and C. Williams, Gaussian processes for machine

learning. MIT Press, 2006.
[26] C. E. Rasmussen and H. Nickisch, “Gaussian processes for machine

learning (gpml) toolbox,” The Journal of Machine Learning Research,
vol. 9999, pp. 3011–3015, 2010.

[27] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Mathematical Society, vol. 58, pp. 527–535,
1952.

[28] ——, “Some aspects of the sequential design of experiments,” in
Herbert Robbins Selected Papers. Springer, 1985, pp. 169–177.

[29] M. Rothschild, “A two-armed bandit theory of market pricing,” Journal
of Economic Theory, vol. 9, no. 2, pp. 185–202, 1974.

[30] R. Simon, “Optimal two-stage designs for phase ii clinical trials,”
Controlled clinical trials, vol. 10, no. 1, pp. 1–10, 1989.

[31] E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E.
Rasmussen, “Derivative observations in gaussian process models of
dynamic systems,” 2003.

[32] D. L. St-Pierre, Q. Louveaux, and O. Teytaud, “Online sparse bandit
for card games,” in Advances in Computer Games. Springer, 2012,
pp. 295–305.

[33] F. Stulp, E. Theodorou, J. Buchli, and S. Schaal, “Learning to grasp
under uncertainty,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 5703–5708.

[34] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Simo: A simulation and
motion planning toolbo for c+.”

[35] R. Weber et al., “On the gittins index for multiarmed bandits,” The
Annals of Applied Probability, vol. 2, no. 4, pp. 1024–1033, 1992.

[36] J. Weisz and P. K. Allen, “Pose error robust grasping from contact
wrench space metrics,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on. IEEE, 2012, pp. 557–562.

[37] O. Williams and A. Fitzgibbon, “Gaussian process implicit surfaces,”
Gaussian Proc. in Practice, 2007.

[38] Y. Zheng and W.-H. Qian, “Coping with the grasping uncertainties
in force-closure analysis,” Int. J. Robotics Research (IJRR), vol. 24,
no. 4, pp. 311–327, 2005.


	Introduction
	Related Work
	Multi-Armed Bandit Model
	Preliminaries and Problem Definition
	Grasp Metric
	Line of action
	Problem Definition

	Multi-Armed Bandits for Grasp Selection
	Evaluating a Grasp on Gaussian Process Implicit Surface
	Gaussian Process (GP) Background
	Calculating the Expected Grasp Quality

	Distribution of Grasp Parameters
	Distribution on Contact Points
	Distribution on Surface Normals
	Expected Center of Mass
	Complexity Analysis on Sampling From Grasps Distributions

	Experiments
	Multi-Armed Bandit Experiments
	Sampling from Grasps vs. Shape

	Limitations
	Conclusion
	Future Work
	References

