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Abstract − Medical procedures such as seed implantation, 
biopsies, and treatment injections require inserting a needle tip 
to a specific target location inside the human body. This is 
difficult because (1) needle insertion causes soft tissues to 
displace and deform, and (2) it is often difficult or impossible to 
obtain precise imaging data during insertion. We are developing 
a sensorless planning system for needle insertion that 
incorporates numerical optimization with a soft tissue 
simulation based on a dynamic FEM formulation that models 
the effects of needle tip and frictional forces using a 2D mesh. In 
this paper we describe a sensorless planning algorithm for 
radioactive seed implantation that computes needle insertion 
offsets that compensate for tissue deformations. We apply the 
method to seed implantation during permanent seed prostate 
brachytherapy to minimize seed placement error in simulation 
without relying on real-time imaging. 

I. INTRODUCTION 

Medical procedures such as brachytherapy, biopsies, and 
treatment injections require inserting a needle to a specific 
target location inside the body to implant a radioactive seed, 
extract a tissue sample, or inject a drug. In all cases, the 
needle tip should be as close as possible to an internal target 
when the procedure is performed. Unfortunately, inserting the 
needle causes the surrounding soft tissues to displace and 
deform. Real-time imaging is often not available during 
insertion or is of poor quality. As illustrated using simulation 
in  left column, lack of planning can result in 
substantial placement error. 
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Fig. 1: Four vertical frames illustrating needle insertion based on deforming 
ultrasound images of the human prostate using simulation. The left column 
shows results without planning, producing substantial seed placement error. 
The right column shows results with the sensorless plan, with minimal 
placement error. The target implant location is indicated in all frames with a 
white cross fixed in the external world frame. Frame (a) outlines the prostate. 
In Frame (b), the needle is inserted and the radioactive seed (small square) is 
released at the needle tip. In Frame (c), the needle is retracted. Frame (d) 
indicates the resulting placement error, the distance between the target and 
resulting actual seed location. Without planning, placement error is 
substantial: 26% of the prostate diameter, resulting in damage to healthy 
tissue and failure to kill cancerous cells. With sensorless planning, shown in 
the right image of Frame (d), placement error is negligible. 

We are developing a sensorless planning system for needle 
insertion to reduce placement error. Given the target location, 
our system computes a needle offset that compensates for 
tissue deformations. We use a 2D FEM model of the soft 
tissues surrounding the target implant location and then use 
dynamic simulation of needle insertion to compute tissue 
deformations. The planner iteratively tests different insertion 
locations and depths to compute the optimal needle offset: a 
sensorless motion plan as illustrated in  right column 
greatly reduced placement error. 

In this paper we demonstrate the system in the context of 
permanent seed prostate brachytherapy, a minimally invasive 
medical procedure that is widely used for treating prostate 
cancer due to the excellent long-term outcomes. Before the 
implant procedure, a dosimetric plan specifying desired seed 
locations is prepared based on static ultrasound imaging of 

the prostate and medical considerations to provide a high 
radioactive dose to cancerous cells and a low dose to healthy 
tissues. Numerical methods for computing optimal seed 
locations have been developed [23, 30]. Multiple seeds and 
biodegradable spacers, each smaller than a grain of rice, are 
loaded into needles that the physician inserts transperineally 
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into the patient who is lying on his back. Seeds and spacers 
are injected at the depth specified by the dosimetric plan. The 
permanently implanted radioactive seeds irradiate the 
surrounding tissue over several months before becoming 
inert. 

The success of this procedure depends on the accurate 
placement of seeds within the prostate gland so that the 
desired radioactive dose distribution is achieved [12, 22]. 
Improper seed placement will result in an unsatisfactory dose 
distribution that irradiates healthy tissues and fails to kill 
cancerous cells. Seed placement error is the Euclidean 
distance between the desired location specified by the 
dosimetric plan (the target) and the actual implanted seed 
location. 

Tissue deformations during needle insertion and retraction 
contribute to seed placement error [22, 26], as illustrated in 

. In [26], an experienced physician implanting seeds 
(without stabilizing needles) in 20 patients achieved average 
displacement errors of 0.47cm in depth and 0.22cm in height 
for an average placement error of 0.63cm, a substantial error 
of 21% of average prostate diameter (3cm). Real-time 
ultrasound imaging is used during the procedure to help guide 
each needle along a straight path and to verify the depth of 
the needle tip in the world frame. However, the imaging 
cannot effectively be used to compensate for deformations 
because it does not include crisp markers with known 
positions inside the tissues. Below we describe a sensorless 
planning approach using simulation that can reduce seed 
placement error without relying on real-time imaging. 

Fig. 1

II. RELATED WORK 

In robotics, sensorless planning algorithms, pioneered by 
Mason and Erdmann in the 1980s [14], have been developed 
to position and orient mechanical parts using parallel jaws [9, 
16], vibrating surfaces [8], single joint robots over conveyor 
belts [1], and squeeze and roll primitives for micro-scale parts 
[20]. Sensorless planning has also been applied to 
manipulating objects by stable pushing [19] and insertion of 
parts inside fixtures [6]. For seed placement planning using 
needles, our goal is to model and compensate for mechanical 
response before actions are performed. 

To apply sensorless planning to needle insertion, we 
require a fast and accurate simulation. DiMaio and Salcudean 
performed pioneering work in simulating the deformations 
that occur during needle insertion [13]. Their simulation, 
based on a quasi-static finite element method, achieves 
extremely fast update rates (500Hz) and high accuracy (node 
displacement error of 1.4mm for needle penetration of 
70mm). High accuracy requires a calibration phase where the 
force distribution along the needle shaft is estimated based on 
observed tissue deformations. This force distribution, which 
is modeled with a parameterized surface in Figure 11 of [13], 
may be difficult to measure in vivo. Our simulation uses an 
alternative model based on a reduced set of scalar parameters 
such as needle friction, sharpness, and velocity [3]. The 

sensitivity of seed placement error to these parameters was 
analyzed in [3]. In this paper, we focus on sensorless 
planning: computing offsets for insertion height and depth to 
minimize placement error. 

Needle insertion simulation requires computing 
deformations of soft tissue when forces are applied. The 
history of offline animation and real-time simulation of 
deformable objects is summarized in [15]. Unlike heuristic 
methods like the mass-spring model, the finite element 
method (FEM) is based on the equations of continuum 
mechanics. The feasibility and potential of this approach for 
animation was demonstrated by Terzopolous et al. [28]. Real-
time visual performance for surgery simulation of the human 
liver using FEM was achieved by Stéphane Cotin et al., 
although the required preprocessing step took 8 hours on a 
standard PC [11]. They modeled tissue as a linearly elastic 
material and allowed only small quasi-static deformations. 

Our simulator relaxes the quasi-static assumption and 
simulates dynamic deformations, as formulated by Zhuang 
[31] and Picinbono et al. [21]. These dynamic simulations 
rely on mass lumping to achieve interactive performance, but 
the loss of realism for soft tissues resulting from this 
approximation is relatively low as shown experimentally in 
[4]. Both Zhuang and Picinbono et al. use quadratic strain to 
accurately model large deformations, and Wu et al. extended 
this work to include nonlinear material elasticity [29]. 

Setting accurate parameters for tissue properties is 
important for realistic simulation. We use results from 
Krouskop et al., who estimated the elastic modulus for 
prostate and breast tissue using ultrasonic elastography [18]. 
Recent work in nonlinear parameter estimation includes [9] 
and [17]. Kataoka et al. separately measured tip and frictional 
forces during needle insertion into a canine prostate [25]. 

When real-time sensor data such as MR imaging is 
available during needle insertion procedures, robotic control 
algorithms can be used to steer the needle to the desired 
target [24]. However, sensorless planning based on pre-
operatively predicting the effects of tissue deformations must 
be used when real-time sensor data is not available or 
unreliable. In [5], a piece-wise nonlinear FEM model was 
used to track the position of a tumor during breast 
compression before a breast cancer biopsy. However, we are 
not aware of past work explicitly simulating needle insertion 
and the resulting tissue deformations to plan needle 
procedures without real-time sensor input. 

III. PROBLEM DEFINITION 

In this paper we consider the problem in the 2D plane; we 
are currently working on extending our approach to 3D. As 
illustrated in , the slice of the tissue is in the yz plane 
and the needle moves parallel to the z-axis at some “insertion 
height” y

Fig. 2

r to an “insertion depth” zr. Let pt=(yt, zt) be a 
specific target point in the undeformed prostate. The point 
pr=(yr, zr) denotes the release point at the tip of the needle 
after insertion. (The release point would be the sample 



 

collection point in the case of a biopsy.) After needle 
retraction, the actual final location of the seed is pa=(ya, za), 
where pa≠pr due to tissue deformations during needle 
insertion and retraction. Seed placement error is the 
Euclidean distance between pa and pt: 
ε=||pa-pt|| 

For a given target point inside soft tissue, the problem is to 
compute a release point pr that minimizes placement error. 

 
Fig. 2: Slice of deformable tissue in the yz plane. The needle is inserted from 
right to left parallel to the z-axis, causing the tissue to deform. 

During permanent seed prostate brachytherapy, roughly 20 
bevel tip needles are each loaded with multiple seeds 
separated by spacers. During needle retraction, the “train” of 
seeds and spacers are released in the prostate. In this paper, 
we only address placement of the first seed in the train and 
ignore the remaining seeds in each needle; we plan to address 
multiple seeds per needle in the future. Each needle is fully 
retracted before the next is inserted. Hence, we assume each 
needle insertion and seed implantation procedure is 
independent. Unlike needles, we assume seeds do not cut 
tissue. Hence, a seed will move only when the surrounding 
tissue deforms. We also approximate the needle as thin and 
rigid with a symmetric pointed tip. Once the needle is in 
contact with tissue, its y-coordinate is fixed and it only moves 
parallel to the horizontal z-axis. We assume the needle is 
inserted at a constant velocity of 0.5cm/sec. 

A metal block containing approximately 50 holes at fixed 
coordinates is used by the physician to guide each needle 
during insertion. We relax the discrete insertion coordinate 
restriction and allow the insertion height yi to vary 
continuously, which allows for better minimization of seed 
placement error but will require new hardware in medical 
practice. The region of skin where the needle can be feasibly 
and safely inserted into the patient is limited, so we restrict 
the range of yr to yr∈(ymin, ymax). The maximum medically 
feasible insertion depth is given by zmax. 

Computing the seed placement error ε=||pa-pt|| requires a 
relation between the actual seed implant location pa and the 
release point pr. We compute pa as a function of pr 
numerically using simulation. (We are not aware of a closed-
form equation that computes deformations in inhomogeneous 
tissues caused by needle insertion.)  

The required simulator must estimate soft tissue 
deformations caused by needle insertion in 2D over time 
steps of duration h. We assume all soft tissues are elastic, but 
other properties may vary depending on tissue type and 

limitations imposed by the simulator used. The numerical 
experiments discussed in this paper use the FEM simulator 
described in section IV, which is an extension of past work 
[3], using a time step h=1/30 seconds. 

The planning algorithm’s inputs and outputs for each 
needle and target seed placement are defined by: 
Input: 

Needle insertion simulator with required parameters (as 
defined in section IV) 

pt: Target coordinate in the tissue 
(ymin, ymax): Range of feasible insertion heights 
zmax: Maximum feasible insertion depth 
v: Needle velocity during insertion and retraction 
h: Simulation time step 

Output: 
pr*: Release point that minimizes seed placement error 
 
A naïve planner that ignores tissue deformations would set 

pr=pt. To estimate an optimal release point pr*, the planner 
computes an offset from pt for both the insertion depth and 
height. The offset for needle insertion depth is necessary 
because tissue in front of the needle tip is compressed during 
insertion; the needle must be inserted deeper than zt to 
compensate for this compression. The offset for insertion 
height is necessary since organs or glands (such as the 
prostate) may rotate during needle insertion. For example, if 
the target is located near the bottom of the prostate, inserting 
the needle near the target height causes the prostate to rotate 
slightly clockwise, as shown in . The needle must be 
inserted higher to compensate for its deflected path through 
the prostate. This occurs because the prostate is composed of 
a stiffer material than the surrounding soft tissue. Hence, both 
needle insertion depth and height must be planned to 
minimize placement error. 

Fig. 3

Fig. 3: When the needle pushes against the lower half of the prostate from 
the right, the prostate rotates clockwise slightly because it is stiffer than the 
surrounding tissue. This slight rotation can lead to significant changes in the 
optimal needle insertion height. 

  
(a) Needle approaches prostate (b) Prostate rotated by needle 

IV. NEEDLE INSERTION SIMULATION 

Our simulator of 2D elastic soft tissue deformations is 
based on [3]. We approximate soft tissues as linearly elastic 
materials. Tissue may be inhomogeneous but must be fully 
connected with no gaps between different tissue types.  



 

A. Simulation Input M ai + C vi + K ui = fi (1) 
The geometry of the soft tissue surrounding the target is 

defined using a reference mesh composed of m discrete 3-
node triangular elements created using n total nodes, each 
with 2 degrees of freedom. Each element in the mesh may be 
assigned unique material properties, which allows for the 
simulation of inhomogeneous tissue. As specified in [3], the 
simulator uses biomechanical values for tissue stiffness 
(Young’s modulus) and compressibility (Poisson ratio) and 
for needle properties specified by the coefficients of static 
and kinetic friction and the force required to cut a unit length 
of soft tissue. 

where M is the mass matrix, C is the damping matrix, K is 
the stiffness matrix, and at time step i, fi is the external force 
vector, ai is the nodal acceleration vector, vi is the nodal 
velocity vector, and ui is the nodal displacement vector.  

To integrate the differential system (1) over time, we use 
the Newmark method, which translates the differential system 
into a linear system of equations which we solve using the 
methods in [3] for interactive performance. 

D. Simulating Needle Insertion 
We simulate the force the needle exerts on the tissue at its 

tip and frictional forces along the needle shaft. These forces 
applied by the needle are computed and the FEM force vector 
fi is updated at every time step.  

B. Simulation Output 
The simulation computes mesh deformations that simulate 

the tissue’s response to the needle over time. The reference 
mesh defines the geometry of the tissue, with each node’s 
coordinate stored in the position vector x. The deformed 
mesh is constructed using the node coordinates x+ui in the 
world frame, where ui is the nodal displacement vector 
computed for each time step i. Using a fixed time step 
duration h, we obtain simulated deformations for times t=h i, 
i≥0. 

Using FEM, forces are applied as boundary conditions on 
elements in the reference mesh. Since the needle may be 
inserted at any location, it is usually necessary to modify the 
reference mesh in real-time to ensure that element boundaries 
are present where the tip and friction forces must be applied. 
To apply the tip force, a node is maintained at the needle tip 
location during insertion. To apply the friction forces, a list of 
nodes along the needle shaft is maintained and these nodes 
are constrained to only move horizontally along the needle 
shaft. These mesh modifications, which modify the reference 
mesh coordinate vector x, are fully described in [3].  

The coordinate of a node k in the world frame at time step 
i is given by xk+ui,k where xk is the reference mesh coordinate 
and ui,k is the displacement of node k at time step i. As shown 
in Fig. 4, the coordinate of a target point pt located at node k 
in the reference mesh is displaced by ui,k when the mesh is 
deformed at time step i. (The displacement of target points 
not located at nodes can be computed in O(1) time using 
interpolation of the displacements of the nodes of the 
enclosing element.) 

Nodes along the needle shaft also carry state information; 
they are either attached to the needle (in static friction state) 
or allowed to slide along the needle shaft (in dynamic friction 
state). State transitions are determined by the friction 
coefficients. The node state information and displacement 
computation produce a history dependant simulation where 
the output of time step i depends on the output of time step 
i-1. 

  
(a) Initial mesh (b) Deformed mesh  

A seed can be implanted at the location of the needle tip in 
the reference mesh at any insertion depth. After implantation, 
we assume the seed’s reference mesh coordinate is fixed and 
it moves in the world frame only as a result of surrounding 
tissue deformations. The location of the seed in the world 
frame is tracked efficiently as described in [3]. 

The computation time required for each simulation time 
step depends on the numerical method used to solve equation 
(1). For fastest performance, we use an O(n) method as 
described in [3]. 

Fig. 4: At time step i=0, u0=0 and the coordinate of the target in the reference 
mesh xk, denoted by ×, coincides with the target in the world frame, denoted 
by • (a). Both the × and • represent the same location within the tissue, but 
their world frame coordinates differ by ui,k when the tissue is deformed at 
time step i>0 (b). 

V. NEEDLE INSERTION PLANNING 
C. Computing Soft Tissue Deformations 

Given a target point pt, the goal of needle insertion 
planning is to find an optimal release point pr* that 
minimizes seed placement error ε=||pa-pt||, where the actual 
seed implant location pa is a function of the release point pr. 
The optimal pr* cannot be computed analytically by 
differentiating the error function ε because the relationship 
between pr and pa can only be computed numerically by 
simulation. Instead, our algorithm efficiently uses simulation 

We use a finite element method (FEM) to compute the 
deformations of soft tissue when forces are applied by the 
needle. For realistic results, we simulate the dynamic 
behavior of the tissue by solving for the acceleration, 
velocity, and displacement of each node at every time step. 

Using the standard notation in [32], the FEM problem for 
mesh the given reference mesh is defined by a system of up 
to d=2n linear differential equations: 



 

to estimate the optimal pr*. 
We first describe how to efficiently compute pa and ε 

using simulation when given the release point pr=(yr, zr). 
Then, we propose a method to estimate the optimal depth zr* 
that minimizes the error ε when a candidate insertion height 
yr is given. Finally, we describe how to select candidate 
insertion heights to estimate the optimal yr* that minimizes ε. 

A. Computing Placement Error Given the Release Point 
Given the target pt and the release point pr=(yr, zr), the 

placement error ε=||pa-pt|| requires an estimate of pa, the 
actual seed location after needle insertion and retraction using 
a release point of pr. We compute this estimate using 
simulation. Initially, the needle tip is outside the body, which 
corresponds to z<0. We set the insertion height yr and 
simulate needle insertion to a depth of zr and implant a seed 
in the mesh. We then simulate needle retraction until zr<0, 
wait for steady state, and then use the final seed location as 
an estimate for pa. 

The time required to estimate pa can be reduced 
significantly by replacing the simulation of needle retraction 
with an O(1) time computation. The simulation algorithm 
described in section IV.D always maintains a node at the 
location the needle tip during insertion. Assume the needle 
tip, located at node j, has reached the release point pr at time 
step i in the FEM simulation. As described in section IV, both 
the reference mesh coordinate xk and displacement ui,k for 
node k at time step i are known after the FEM system of 
equations has been solved. By the elasticity assumption, the 
displacement vector uj will be 0 for all iterations j at steady 
state after needle retraction because no external forces are 
being applied to the soft tissue. Hence, the location in the 
world frame of the release point pr after needle retraction will 
be xk+uj=xk. Since we assumed that seeds do not cut tissue, 
the final seed location is pa=xk and the error is ε=||xk-pt||, 
where xk is the reference mesh coordinate of the node k at the 
needle tip when it reaches the release point pr in simulation. 

B. Minimizing Placement Error Given Insertion Height 
When given a candidate needle insertion height yr, we 

simulate needle insertion at height yr to find the insertion 
depth zr* that minimizes placement error ε.  

zr*=arg min ε(zr | yr). 
Because the simulation of needle insertion is history 
dependent, we must compute ε(z | yr) in order to compute 
ε(z+dz | yr) for dz, z>0. We begin with the needle located 
outside the body (z=0) and simulate needle insertion at height 
yr until z=zmax. Using the algorithm described in section IV, z 
is increased by dz=v h every time step, where h is the time 
step duration and v is the needle velocity. The insertion depth 
z at each time step serves as a candidate for the optimal 
release point zr*. We compute ε(z | yr) in O(1) time as 
described in section V.A for every time step and save the zr* 
for which ε is smallest. Because ε is computed for every 
feasible insertion depth, the optimal zr* for the given yr is 
guaranteed to be found (within a resolution of dz) regardless 

of the convexity properties of the function ε(zr | yr). 
This optimization computes zmax/(v h) simulation time 

steps, each requiring O(n) time as described in section IV.D. 
Since the needle tip will move a distance v h each time step, 
the resolution of z* is v h. A small time step h is desirable to 
improve the resolution of z*, but the number of time steps 
required to compute the optimal insertion depth z* grows as h 
decreases. 

C. Estimating Insertion Height to Minimize Placement Error 
For any candidate insertion height yr, we compute the 

optimal insertion depth zr* and the resulting placement error: 
ε(yr) = min ε(zr | yr) 

Our goal is to minimize ε(yr) over the given feasible range 
ymin≤yr≤ymax. The value of yr*  

yr* = arg min ε(yr) 
combined with the corresponding optimal zr*  

zr* = arg min ε(zr | yr*) 
specifies the optimal release point pr*=(yr*, zr*) that 
minimizes seed placement error ε. 

Minimizing ε(yr) is difficult because derivative values are 
not available and the function is not guaranteed to be 
unimodal (strictly quasiconvex). In general, an approximate 
minimum of ε(yr) can be found using a grid search over 
yr∈(ymin, ymax). 

However, the function ε(yr) for some simulations will be 
unimodal near the minimum. In particular, this property will 
hold when it is not possible to insert the needle at different 
heights and still reach the same point in the reference mesh of 
the tissue. Although this property is not guaranteed, it holds 
for most feasible targets in our simulation that are not 
adjacent to an inhomogeneous tissue boundary. In such cases, 
a line search method can be used over the feasible range to 
find the optimal yr*. We use the golden section search 
method [7] because, unlike a standard binary search, it does 
not rely on derivative information (which is not available in 
the simulation). Golden section search is a variant of the 
Fibonacci search that requires fewer error function 
evaluations. Each iteration of the line search evaluates the 
error function ε(yr) for a new candidate insertion height yr, 
which is computationally expensive to evaluate since it 
requires simulating needle insertion at height yr to find an 
optimal depth zr* and resulting error, as described in section 
V.B. The algorithm iterates until the optimal is found within a 
specified tolerance; convergence is guaranteed if the error 
function is unimodal. 

VI. PLANNING FOR SEED PLACEMENT 

Fig. 1 provides a simulated case study showing that 
deformations can produce significant errors in final seed 
placements during prostate brachytherapy. Seed placement 
error should be minimized to achieve the desired radioactive 
dose distribution. Below we demonstrate the performance of 
the planner for seed placement during prostate brachytherapy. 



 

A. Prostate Model 
Our prostate model is based on an anonymous patient who 

underwent brachytherapy treatment for prostate cancer at the 
UCSF Medical Center in June 2002. A pre-procedure 
ultrasound image of the prostate was superimposed as a 
texture map on a square planar mesh composed of 1250 
triangular elements. A polygon outlining the prostate 
membrane was manually drawn on the texture map by a 
physician (coauthor I-Chow Hsu); underlying mesh elements 
within this polygon were assigned prostate tissue properties 
and the remaining elements were assigned lower stiffness 
fatty tissue properties, resulting in an inhomogeneous mesh. 
The Young’s modulus and Poisson ratio were set using [18]. 
The remaining parameters in our simulation were set using 
ultrasound imaging data from a real medical procedure 
performed on the same patient in June 2002, as described in 
[1] and [3]. 

B. Target Test Case 
We test our planning algorithm for the target pt=(1.50cm, 

3.00cm) shown in Fi  for a 3cm diameter prostate. Without 
planning, deformations are ignored and the needle is inserted 
with zero offsets to pr=pt. Based on our simulation, this 
results in the seed being implanted at pa=(1.41cm, 2.21cm), a 
placement error of ε=0.79cm (26% of the prostate diameter). 

g. 1

C. Optimizing Insertion Depth 
For insertion of a needle at the target height yr=yt=1.5cm, 

we plot the placement error ε(zr | yr=yt) in . The 
insertion depth zr=zt=3.0cm yields a placement error of 
ε=0.79cm, 26% of prostate diameter. The error in the depth 
coordinate is caused primarily because the tissue in front of 
the needle tip is being compressed before it is cut. Hence, the 
needle must be inserted deeper than the target depth to 
decrease the error. To minimize ε for yr=yt, the needle should 
be inserted to a depth of zr*=3.84cm, which reduces the error 
by 82% to only ε=0.14cm, 5% of prostate diameter. 

Fig. 5

Fig. 5: Needles should generally be inserted deeper than the target depth to 
compensate for tissue deformations and minimize placement error. The bold 
portion of the line denotes feasible seed placements inside the prostate. 
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D. Optimizing Insertion Height 
For a 0.6cm range around the target height yt=1.5cm, we 

plot the estimated optimal insertion depth in Fi (a) and the 
resulting error ε in (b). The planner finds pr

* with 
ε*=0.003cm (0.1% of prostate diameter) by inserting at 

height yr*=1.59cm to a depth zr*=3.80cm. 
To test planner performance, we selected 12 sample points 

inside the prostate, shown by the crosses in the Fig. 7. We 
apply golden section search in the range yr∈(yt–
0.2cm, yt+0.2cm) with tolerance 0.01cm for each target. 
Without planning, the average error was 0.59cm (20% of 
prostate diameter) with a standard deviation of 0.10cm. Using 
our planner, the average error was reduced in simulation to 
0.002cm (0.07% of prostate diameter) with a standard 
deviation of 0.004cm.  

Our needle insertion planner and simulator were 
implemented using C++ and tested on a 750MHz Pentium III 
PC with 256MB RAM. The average time to compute optimal 
depth given height was 8.5 seconds and computing both 
optimal height and depth for each target took an average of 
97.7 seconds. 

 

g. 6
Fig. 6

Fig. 6: For all candidate insertion heights yr, optimal depth zr* (a) and 
resulting error (b) are computed. Placement error is negligible for 
pr=(1.59cm, 3.80cm). 
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(a) Placements without planning (b) Placements using planner 
Fig. 7: Twelve sample points were selected at random as targets maked “+” 
inside the prostate. Actual seed placements using simulation are marked “•”. 
Lack of planning results in major placement errors averaging 20% of the 
prostate diameter (a), which will lead to a poor radioactive dose distribution. 
Seed placement error was neglible using the planner (b). 



 

VII. CONCLUSIONS 

We describe a sensorless planning method for needle 
insertion procedures. The method combines numerical 
optimization with soft tissue simulation. The simulation, 
based on a dynamic FEM formulation, models the effects of 
needle tip and frictional forces on soft tissues defined by a 2D 
mesh. Our sensorless planning method for radioactive seed 
implantation computes needle offsets to minimize seed 
placement error by compensating for predicted tissue 
deformations. 

The effectiveness of the planner in vivo will be dependant 
on the accuracy of the simulation of needle insertion and 
tissue deformations for a specific patient. The sensitivity 
analysis in [3] suggests that 2D seed placement error in 
homogeneous tissues is more sensitive to physician-
controlled parameters than to patient-specific parameters such 
as the Young’s modulus and Poisson ratio, which is 
beneficial since the latter are more difficult to estimate before 
the procedure. We are currently investigating 3D 
inhomogeneous tissue models, needle bending during 
insertion, the interaction of multiple seeds per needle, and 
faster placement error minimization methods. 
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