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Needle Steering in 3-D Via Rapid Replanning
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Abstract—Steerable needles have the potential to improve the ef-
fectiveness of needle-based clinical procedures such as biopsy and
drug delivery by improving targeting accuracy and reaching previ-
ously inaccessible targets that are behind sensitive or impenetrable
anatomical regions. We present a new needle steering system ca-
pable of automatically reaching targets in 3-D environments while
avoiding obstacles and compensating for real-world uncertainties.
Given a specification of anatomical obstacles and a clinical tar-
get (e.g., from preoperative medical images), our system plans and
controls needle motion in a closed-loop fashion under sensory feed-
back to optimize a clinical metric. We unify planning and control
using a new fast algorithm that continuously replans the needle
motion. Our rapid replanning approach is enabled by an efficient
sampling-based rapidly exploring random tree (RRT) planner that
achieves orders-of-magnitude reduction in computation time com-
pared with prior 3-D approaches by incorporating variable cur-
vature kinematics and a novel distance metric for planning. Our
system uses an electromagnetic tracking system to sense the state
of the needle tip during the procedure. We experimentally evaluate
our needle steering system using tissue phantoms and animal tissue
ex vivo. We demonstrate that our rapid replanning strategy suc-
cessfully guides the needle around obstacles to desired 3-D targets
with an average error of less than 3 mm.

Index Terms—Medical robotics, needle steering.

I. INTRODUCTION

N EEDLE-BASED procedures are widely used in minimally
invasive clinical procedures for diagnosis and treatment,

including biopsy, drug delivery, and radioactive seed implan-
tation for cancer treatment. Performing these procedures using
traditional stiff needles is limited to straight line paths between
the needle entry location and target region, which makes it dif-
ficult or impossible in some cases to reach clinical targets with-
out puncturing sensitive tissues or colliding with anatomical
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Fig. 1. Closed-loop needle steering via rapid replanning. (top) Given the cur-
rent needle tip state, target region, a specification of the anatomy, and character-
ization of the steerable needle’s properties, our approach uses a fast randomized
motion planner to compute, in the available time, many feasible motion plans
across homotopy classes. (middle) The method selects the best plan based on a
metric such as minimizing path length or maximizing clearance from obstacles.
(bottom) We execute the first control input of the plan and measure the state
of the needle tip. The actual state of the needle tip deviates from the model
predicted state because of uncertainty. We repeat the planning process, hence
replanning, starting from the actual needle tip state. This approach is made
possible by a new fast planner capable of computing hundreds of feasible plans
per second.

obstacles. Moreover, the use of stiff needles can result in large
targeting errors due to the displacement of the needle from its
intended path because of factors such as needle/tissue deforma-
tion, uncertain needle/tissue interaction, actuation errors, and
noisy sensory feedback [1].

As an alternative to stiff needles, a new class of highly flexible
bevel-tip needles are being developed that enable the needle to
move along curved trajectories within a tissue when a forward
pushing force is applied [8], [40]. These steerable needles of-
fer improved maneuverability within tissue during insertion and
greater targeting accuracy. They also facilitate access to previ-
ously inaccessible clinical targets while avoiding obstacles such
as sensitive anatomical tissues (e.g., vital organs and vessels)
and impenetrable structures (e.g., bones). However, guiding a
steerable needle around obstacles under image guidance by ma-
nipulating the needle at its base requires reasoning in a 6-D pose
space and is not intuitive for a human.

We present a new approach to automatic needle steering to
reach targets in 3-D environments while avoiding obstacles and
compensating for real-world uncertainties. Our approach uses
rapid replanning, a new technique for 3-D needle steering in
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which a fast motion planner is repeatedly reexecuted as the nee-
dle is inserted to perform closed-loop planning and control under
sensory feedback. In contrast with the standard practice of plan-
ning a feasible trajectory and then using a feedback controller
for correcting uncertain perturbations, our motion planner is fast
enough to correct for perturbations in needle, obstacle, or target
motion as they occur. This enables the system to automatically
steer the needle along paths that avoid obstacles of known loca-
tion, which is a useful capability to have in a steerable needle
system.

We integrate our rapid replanning approach into a system that
consists of a bevel-tip steerable needle, a needle steering robot,
and an electromagnetic tracker for estimating the needle tip pose
in a tissue. Given preoperative medical images, the clinician
can specify the insertion location and target region as well as
sensitive structures such as glands or blood vessels and other
obstacles such as bones (see Fig. 1). Our rapid replanner then
automatically guides the needle around anatomical obstacles to
the target region with high accuracy.

Our new rapid replanning approach uses a customized
sampling-based motion planner that speeds up needle steer-
ing motion planning to the point that it can be done in real
time with typical needle insertion velocities. To enable efficient
planning, we leverage several observations and algorithmic ad-
vances. First, in contrast with prior motion planning approaches
for needle steering, we relax the constant curvature path as-
sumption by planning variable curvature paths and using duty-
cycled spinning during insertion [13], [23] to adjust the needle’s
net curvature. Second, we propose a new distance metric for
incremental expansion of the rapidly exploring search tree to
significantly improve planner performance. These help us
achieve orders-of-magnitude reduction in computation time
compared with prior sampling-based planners [41] and make
the planner suitable for closed-loop needle steering.

In this study, in addition to providing a refined archival version
of our results in [29], we present several important extensions.
First, we extend the fast motion planner to create a rapid replan-
ning framework that enables a needle steering system to correct
for real-world uncertainties as they occur. Second, we provide
experimental results using a new needle steering system that
includes preoperative imaging and electromagnetic tracking,
demonstrating that the algorithm can work in a practical clinical
scenario. In our experiments, the system guided the needle tip in
3-D to targets in phantom and animal tissues ex vivo with errors
averaging below 3 mm; for comparison, experienced physicians
achieved targeting errors averaging 5.5–6.5 mm when perform-
ing procedures using stiff needles [5], [32]. Our experiments
demonstrate that our system can achieve targeting accuracy that
exceeds current clinical practice while simultaneously enabling
avoidance of obstacles.

II. RELATED WORK

Several needle steering techniques have been developed that
allow clinicians to adjust the needle path within a tissue to
improve targeting accuracy. These include bevel-tip flexible
needles [40], symmetric-tip needles that can be steered by ap-
plying forces at the base [11], [15], curved stylet tips [26],

programmable bevel-tip needles [19], and prebent concentric
tubes [39]. Our emphasis is on bevel-tip flexible needles, but
our approach is also applicable to planning and control of nee-
dles with stylets and programmable bevel-tip needles.

Significant advancements have been made in modeling bevel-
tip steerable needles [8]. A kinematic model generalizing a uni-
cycle was proposed and experimentally validated by Webster
et al. [40]. Minhas et al. showed that the curvature of the nee-
dle path can be controlled through duty-cycled spinning of the
needle during insertion [23]. Swaney et al. [35] proposed a new
flexure-based needle tip design that provides enhanced steer-
ability of bevel-tip needles during duty-cycled spinning of the
needle, while simultaneously minimizing tissue damage. The
mechanics and characteristics of steerable needles have been
modeled for tissue ex vivo [24] and in vivo [22].

Motion planning algorithms can be used to compute paths in a
robot’s configuration space from a start state to a goal [6], [21].
Motion planning and control for steerable needles in a plane
(2-D) has been extensively studied [2]–[4], [17], [30]. Motion
planners have been developed for needle steering in 3-D en-
vironments with obstacles. Duindam et al. proposed a planner
based on inverse kinematics [12], which is fast but offers no
completeness guarantees. Sampling-based motion planning al-
gorithms such as rapidly exploring random tree (RRT) planners,
which iteratively explore the robot’s configuration space using
a randomized approach, have been effective for a broad range
of robotics problems from autonomous vehicles [20] to pro-
tein folding [6], [21]. Xu et al. created a variant of RRT for
needle steering [41], but the specific approach was too slow
for closed-loop implementation. Park et al. proposed a path-of-
probability algorithm based on diffusion-based error propaga-
tion [27], which considers uncertainty, but this study does not
take into account obstacles or noisy sensing. Prior study has
also considered controlling steerable needles in 3-D environ-
ments to compensate for perturbations during insertion. Hauser
et al. [16] proposed a real-time controller, which plans helical
paths for 3-D needle steering. Seiler et al. [33] proposed a fast
trajectory correction method to compensate for uncertainty dur-
ing insertion. These controllers either do not consider obstacle
avoidance or do not provide any guarantees on performance in
the presence of obstacles. Van den Berg et al. [37] proposed
a framework for planning and LQG-based feedback control of
a steerable needle under motion and sensing uncertainty. This
framework was extended by Patil et al. [28] for deformable
workspaces. Prior LQG-based methods may fail due to control
saturation, which is a practical concern for needle steering, and
cannot respond in real time to significant perturbations not in
the a priori model.

III. OBJECTIVE

To enable automatic needle steering, our system requires as
an input a specification of the anatomy. Given registered preop-
erative volumetric medical images that are standard in clinical
care (e.g., CT scans or MRI), the clinician can specify the initial
state of the needle tip X0 ∈ SE(3), a target Pgoal ⊂ R3 , and
obstacles oi ∈ O that include sensitive structures such as glands
or blood vessels and other obstacles such as bones. Obstacles
are represented as segmented volumes in the images.
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Fig. 2. Overview of our rapid replanning paradigm, which relies on a fast
sampling-based motion planner for closed-loop steering of the needle to the
desired target while avoiding anatomical obstacles. We present details of the
individual components of our approach in Section V.

Our system also requires characterization of the steerable
needle. Although rapid replanning could be applied to a variety
of steerable needles, we focus on bevel-tip steerable needles [8],
which move along an approximately circular arc of constant
curvature κ0 in the direction of the bevel when inserted into a
tissue medium. The needle is controlled by two control inputs:
insertion speed v used to insert the needle and twist speed ω
applied at the needle base used to reorient the bevel-tip. Our
method requires as an input the natural maximum curvature of
the needle κ0 and the empirical relationship α = h[κ], 0 ≤ κ ≤
κ0 that relates the needle’s curvature to the duty cycling factor
α (defined in Section IV).

The objective is to automatically steer the needle around
clinician-specified anatomical obstacles while optimizing a
clinician-specified criteria. The criteria can include metrics such
as minimizing insertion length (i.e., minimizing tissue dam-
age) or maximizing clearance from obstacles (i.e., maximizing
safety). Our approach, shown in Fig. 2, uses rapid replanning.
Given the inputs specified previously, the fast planner computes
a large number of randomized plans, each defined as a sequence
of discrete controls that will steer the needle tip to the target
while avoiding anatomical obstacles. From the computed set of
plans, the planner selects the best plan based on the clinical crite-
ria. To compensate for uncertain perturbations that occur during
needle steering in tissues, the planning process is repeated at
frequent intervals in a closed-loop fashion using feedback from
the electromagnetic tracking system to sense the needle tip pose
at the beginning of each interval and replan a control sequence
to reach the target.

At the core of our rapid replanning approach is a fast motion
planner for needle steering based on a customized RRT planner
described in Section V and based on a variable-curvature needle
kinematic model described in Section IV. The rapid replanning
loop in Fig. 2 continues until the target is reached or until the
z-coordinate of the needle tip (where the z-axis is the axis along
which the needle is inserted prior to entering tissue) is greater
than the z-coordinate of the target.

IV. VARIABLE-CURVATURE NEEDLE KINEMATIC MODEL

Our planner uses a variable-curvature kinematic model of the
motion of the steerable needle’s tip trajectory as the needle is
inserted in a tissue. The kinematic model is deterministic and

Fig. 3. Local coordinate frame Xt attached to the needle tip and a point inR3 :
[x, y, z]T defined in the local coordinate frame. The needle is inserted along
the z-axis and the needle rotates around a line parallel to the x-axis and passing
through the point [0,−r, 0]T . The variable curvature circular arc followed by
the needle (shown in orange) is parameterized as a triplet [l, φ, r].

does not explicitly consider errors arising from factors such as
tissue deformations, actuation errors, and noisy sensing. Our
rapid replanning approach will allow us to correct for these
errors as they occur during the procedure.

We assume that the needle is flexurally flexible and torsion-
ally stiff, i.e., the shaft exactly follows the needle tip, and the
insertions and twists applied to the needle base are directly
transmitted to the tip. The motion of the needle is then fully de-
termined by the motion of the needle tip. The state of the entire
needle is then described by the needle tip pose, represented as a
4 × 4 matrix X = [ R p

0 1 ] ∈ SE(3), where p ∈ R3 is the posi-
tion of the needle tip and R ∈ SO(3) is the rotation matrix that
encodes the needle tip orientation relative to a world coordinate
frame.

We extend the constant curvature unicycle kinematic model
of the needle tip proposed by Webster et al. [40] to consider
the curvature κ (0 ≤ κ ≤ κ0) to be an additional control input
parameter. Let v be the insertion speed, and ω̂ be the twist
speed of the needle. Physically realizing the variable-curvature
kinematic model requires that the curvature κ be realizable in
terms of insertion speed v and twist speed ω, which are the only
two physical control inputs to the system. We later show how
the twist speed ω̂ can be converted to the physical twist speed ω
using duty-cycled spinning of the needle during insertion [23].

Given the control input vector u = [v, ω̂, κ]T ∈ R3 , it is con-
venient to describe the kinematics in terms of the instantaneous
twist U ∈ se(3) expressed in the local coordinate frame attached
to the needle tip (see Fig. 3), given by [37] and [40]

U =

[
[ω̂] v

0 0

]
, ω̂ = [ vκ 0 ω̂ ]T ,v = [ 0 0 v ]T (1)

where the notation [s] for a vector s ∈ R3 refers to the
3 × 3 skew-symmetric cross-product matrix. The discrete-time
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Fig. 4. Time duration Δ is split into three intervals of duration δ each for
α = h[κ] = 1/3. Each interval is then composed of two intervals: 1) a spin
interval of duration δsp in = (2kπ/ωsp in ), k ∈ Z in which the needle is both
inserted and rotated, and 2) an insertion interval of duration δins in which the
needle is only inserted without any rotation.

kinematics evolves over time interval t as

Xt+1 = f [Xt,u, t] = Xt exp(Ut) (2)

where exp(·) denotes the matrix exponential operator. Note that
for the special case of κ = κ0 , ω̂ = ω, and (2) reduces to the
constant curvature kinematic model [40].

Prior study on motion planning for steerable needles in
3-D [12], [27], [41] assumes κ is a constant, which severely
restricts the range of motion of the needle tip. This makes
it difficult for planners to compute a feasible motion plan in
3-D environments with obstacles, thus sacrificing optimality
or completeness. In contrast, our motion planning method as-
sumes a variable-curvature kinematic model that allows us to
compute trajectories composed of circular arcs of bounded cur-
vature (0 ≤ κ ≤ κ0). This helps us to compute feasible motion
plans with subsecond computation time.

We use results from [23], which demonstrated that any cur-
vature 0 ≤ κ ≤ κ0 can be approximated by duty cycling the
rotation of the needle, i.e., by alternating between 1) insertion
without rotation, in which the needle follows a path of maximum
curvature (κ = κ0), and 2) insertion with rotation, in which the
needle moves straight (κ = 0) by spinning at a constant rate
and stopping the spinning such that the tip is at the same ax-
ial angle every time. Duty cycling of steerable needles was
successfully demonstrated in cadaver brains for neurosurgical
procedures [13].

Let the control input u = [v, ω̂, κ]T be applied over a time
duration Δ. Let δ be the duration of each duty cycling interval,
which is composed of an insertion interval of duration δins and
a spin interval of duration δspin , as illustrated in Fig. 4. Let α
(0 ≤ α ≤ 1) be the proportion of the time spent in spin inter-
vals; that is, α = δspin/δ, where δ = δins + δspin . The empirical
relationship between κ and α is expressed as

α = h[κ], 0 ≤ κ ≤ κ0 (3)

where h[κ] is dependent on the mechanical properties of the nee-
dle and tissue and is determined by fitting a polynomial function
to the empirical data gathered during preoperative characteriza-
tion experiments (see Section VI-C).

Duty cycling is implemented for needle steering by moving a
fixed distance each cycle and spinning with a fixed twist speed
ωspin . Given κ, we use (3) to determine α. Since the needle tip
arrives at the same axial angle at the end of each spin interval,
the duration of the spin interval δspin = (2kπ/ωspin), k ∈ Z.
We then compute the quantities δ = (δspin/α) and δins = (δ −
δspin). The low-level control inputs during a duty cycle interval

are given by

v(t) = v, 0 ≤ t ≤ Δ/δ (4)

ω(t) =

{
ω̂ + ωspin , if jδ < t ≤ jδ + δspin

ω̂, if jδ + δspin < t ≤ (j + 1)δ
(5)

where j ∈ {0, 1, . . . ,Δ/δ} and Δ/δ is the total number of duty
cycle intervals required to span the duration Δ. Because the
needle is axially translating as it rotates, stiction between the
needle and tissue is eliminated, which reduces the impact of
torsional windup during steering [31].

The needle/tissue parameters, e.g., κ0 and h, need to be spec-
ified before a needle procedure begins. In a clinical setting, we
anticipate building a library of needle curvatures indexed by
needle type and tissue type that is collected in fresh cadavers
or highly similar animal tissues [22]. When performing a pro-
cedure on a patient, the library could then be used to select the
parameters.

V. RAPID REPLANNING APPROACH

In this section, we present the details of the individual compo-
nents involved in our rapid replanning approach (see Fig. 2) for a
closed-loop needle steering in 3-D environments with obstacles.

The rapid replanning approach requires as an input the esti-
mates of the kinematic model parameters and requires a mech-
anism for unbiased sensing of needle tip pose. While the rapid
replanning approach can compensate for perturbations in nee-
dle motion during execution, it cannot by itself fully correct
for nonzero mean errors that might arise due to factors such as
incorrect kinematic model parameters or systemic biases in tip
position sensing.

A. Motion Planning

To enable motion planning for a rapid replanning approach,
we create a fast motion planner for the steerable needle. We
based our planner on a sampling-based RRT [21], which is
well suited for underactuated nonholonomic systems like the
steerable needle.

The input to the planner is an initial state X0 , a target region
Pgoal , and the computation time available for planning Γ. Our
algorithm is based on the classic RRT, which proceeds as fol-
lows. The planner incrementally builds a tree T over the state
space, while satisfying nonholonomic motion constraints of the
system and avoiding obstacles in the environment. To expand
the tree T , a random state Xrand is sampled from the state space.
The algorithm identifies a node in the tree Xnear , that is closest
to the sample Xrand , as defined by a specified distance metric
ρ[·]. The algorithm attempts to expand T toward Xrand based
upon the best control input u and the resulting state Xnew is
added to the tree. This process is repeated until either the tree
T connects X0 and Pgoal or the available computation time is
exceeded, in which case the algorithm reports that a solution
cannot be found. A feasible plan Ψ is extracted from the tree by
traversing it backward from the goal node to the root.

For a nonholonomic system like the steerable needle, find-
ing the best control input to a sampled state requires solving a
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difficult two-point boundary value problem of connecting two
states in SE(3). Prior RRT-based needle steering planners [41]
avoid this by performing deterministic or uniform random sam-
pling of control inputs to determine the best control input
[v, ω]T ∈ R2 that leads the needle tip to a new state Xnew closest
to Xrand . Since these methods also assume the constant curva-
ture kinematic model, the limited range of motion of the needle
tip requires a large number of control samples to make progress
toward the sampled state. This results in wasted computational
effort and is a major computational bottleneck.

To enable efficient planning, we customize the classic RRT al-
gorithm for steerable needles by leveraging several observations
and algorithmic improvements. We consider variable-curvature
kinematics (see Section IV) and introduce a new distance metric
ρ[·]. We present each step of the algorithm (outlined in Algo-
rithm 1) in detail next. In the available computation time, we
compute many feasible bounded-curvature (0 ≤ κ ≤ κ0) trajec-
tories through 3-D environments with obstacles. The individual
function definitions in Algorithm 1 are as follows.

random point in R3(): To avoid solving the SE (3) two-
point boundary value problem or performing random sam-
pling of control inputs, we sample a random point prand ∈ R3

in the workspace as opposed to sampling a random state in
SE(3). The sampled point can then be connected to a given
state Xnear = [ Rn e a r pn e a r

0 1 ] directly using a circular arc pa-

rameterized by [l, φ, r]T , where l is the arc length, φ is the
change in orientation of the needle tip coordinate frame Xnear
around the znear-axis, and r is the arc radius (see Fig. 3). Let
[x, y, z]T = RT

near(prand − pnear) be the coordinates of prand
in the local coordinate frame of Xnear . The parameters of the
circular arc are then given by

r =
x2 + y2 + z2

2
√

x2 + y2
(6)

φ = arctan(x,−y) (7)

l = rθ = r · arctan 2(z, r −
√

x2 + y2). (8)

To accelerate motion planning for steerable needles, we incor-
porate two forms of biasing that empirically result in significant

performance gains. First, we bias the growth of the tree T to-
ward the target region Pgoal by sampling from Pgoal with a
higher probability than the rest of the workspace. If this bias
is large, the planner behaves like greedy best-first search [21].
Second, whenever a new node Xnew is added to the tree, the
planner attempts to connect Xnew to a randomly sampled point
in Pgoal .
control inputs(·): Given a circular arc parameterized as

[l, φ, r] and a given time interval Δ, we derive the augmented
control input vector required to compute the new state of the
needle tip Xnew . First, we reorient the needle tip by φ radians
such that the circular arc is contained in the plane defined by the
yz axes in the reoriented local coordinate frame Xr

near , which is
obtained by applying a rotation of φ radians around the z-axis to
the current state Xnear . We then compute the augmented control
input u = [v, ω̂, κ]T that steers the needle tip along a circular
arc of length l and radius r using the relations: v = l/Δ, ω̂ = 0,
and κ = 1/r. We compute Xnew by applying u to the reoriented
frame Xr

near for a time duration Δ according to (1) and (2).
nearest neighbor(·): The efficiency with which the RRT

algorithm is able to explore the state space is highly sensitive
to the distance metric ρ[·] used to compute the nearest node in
the tree. In the presence of nonholonomic constraints, widely
used metrics like the Euclidean distance are a very poor approx-
imation of the true distance between points in the constrained
state space. The performance of the RRT planner degrades as a
result of repeated attempts at extending the same nodes in the
tree without making sufficient progress [34].

We introduce a new distance metric customized for steerable
needles that accounts for the needle’s nonholonomic constraint
as well as the buckling of the needle in a soft tissue. Since the
needle has a maximum curvature κ0 , not all sampled points will
be reachable from a given state because of the nonholonomic
constraints of the needle. The reachable set from a state Xnear =
[ Rn e a r pn e a r

0 1 ] consists of all points that can be connected to
pnear by a circular arc that has a radius r ≥ 1/κ0 and is tangent
to the znear-axis of the local coordinate frame. This definition
of the reachable set also directly relates to the distance metric
ρ[·] that is used to select the tree node that is nearest to the
sampled point prand . Accordingly, we define the distance metric
ρ[Xnear ,prand ] as the length of such a circular arc connecting
prand and Xnear if prand is in the reachable set of Xnear , and
infinity otherwise i.e.,

ρ[Xnear ,prand ] =

{
l(≡ rθ), if r ≥ 1/κ0 ∧ θ ≥ 0

∞, otherwise.
(9)

This strategy restricts the search domain to only those nodes
that are within the reachable set of the nearest node Xnear , thus
increasing the likelihood of coverage of the state space [34].

It is important to prevent buckling of the needle shaft, which
may occur during insertion because of reaction forces from the
tissue. This implies that not all points in the reachable set can be
physically accessed by the steerable needle from some poses.
In our experiments, we have observed that the needle starts to
buckle roughly when the needle tip heading is greater than π/2
radians from its initial orientation. We preclude such points from
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being added to the tree by setting the distance to these points to
infinity.
collision free(·): To enable obstacle avoidance, only

collision-free arcs are added to the tree. We check if the circular
arc connecting Xnear and prand is collision free by approximat-
ing it as a sequence of line segments and checking if all the
segments are collision free. Since the obstacle definitions are
obtained from segmentation of 3-D scans, the obstacle meshes
are likely to be nonmanifold. We use the SOLID library [38]
for detecting collisions with arbitrary, polyhedral obstacles at
interactive rates.
extract plan(·): When the position pnew of a newly added

state Xnew is found to lie in the target region Pgoal , the RRT
planner terminates. By traversing the tree T backward from
the goal state to the root, we obtain a trajectory composed of
piecewise circular arcs of bounded curvature (0 ≤ κ ≤ κ0). We
extract a motion plan Ψ comprised of a discrete sequence of
control inputs, in terms of the insertion speed v(t) and twist
speed ω(t), that guide the needle to the target along the computed
trajectory.

For each circular arc parameterized by a triplet [l, φ, r] in
the trajectory, we first reorient the needle tip by φ radians by
applying a control input ω = ωspin for a duration of φ/ωspin . We
then compute the factor α based on the curvature κ = 1/r using
(3). Given the control input u = [l/Δ, 0, 1/r]T , we compute the
controls [v(t), ω(t)]T for traversing the circular arc in a plane
using (4) and (5).

The RRT planning algorithm provides a theoretical proba-
bilistic completeness guarantee [21], i.e., if a solution exists, the
probability of finding it approaches one as time goes to infinity.
However, our rapid replanning method assumes bounded com-
putation time for each replanning interval. Hence, like all RRT
implementations on real robots, the planner does not provide a
completeness guarantee in practical usage. However, as seen in
the results in Section VII, our approach of restarting the RRT
planner while computing multiple plans in each interval can be
effective.

B. Clinical Metrics

When selecting a plan, we consider the following clinically
motivated criteria c[Ψ]:

1) Minimizing the total needle insertion length (shortest
path), i.e., minimizing c[Ψ] =

∫ T

0 v(t)dt. This metric is
relevant to procedures in vital organs such as the brain
where limiting tissue damage is important [14]. Short-
est trajectories, however, often pass in close proximity to
obstacles, thereby increasing the likelihood of collisions.

2) Maximizing the minimum clearance from obstacles (max-
imum clearance), i.e., maximizing:

c[Ψ] = max
0<t≤T

min
∀oi ∈O

d[pt , oi ] (10)

where d[pt , oi ] is the distance of the needle tip pt from
obstacle oi ∈ O. Trajectories that have a greater minimum
clearance from obstacles are safer because they are less
likely to collide with anatomical obstacles when devia-
tions occur. Such trajectories, however, tend to be longer,

Fig. 5. Our needle steering system consists of a needle steering robot, a prebent
bevel-tip steerable needle, and an electromagnetic tracking system. We present
details of the hardware system in Section VI. We performed experiments using
a tissue phantom (shown here) and porcine tissue ex vivo.

thereby increasing the amount of tissue cut during the pro-
cedure. This metric could be useful when obstacle avoid-
ance is critical but other tissue damage is manageable,
e.g., in liver or muscular tissue.

Since during execution it is important to avoid critical struc-
tures, we allow the clinician to specify a safety buffer ε, which
requires the motion planner to only return plans that pass at
least ε distance away from each obstacle. Setting an appropriate
value of ε is particularly important when using the shortest path
metric. A good value for ε is the maximum error in tip location
that can occur in a single replanning interval due to uncertainty,
which would guarantee avoidance of obstacles during execu-
tion. We enforce the safety buffer in our RRT-based planner by
artificially enlarging all obstacles by a predefined safety buffer
ε using Minkowski sums [38].

The correct choice of the clinical criterion will vary by a
specific procedure, and we will assume that the clinician will
select c[Ψ] based on the requirements of the procedure. To
compute a plan that optimizes c[Ψ] as much as possible in
the allowable computation time, we use our fast randomized
planning algorithm to compute hundreds of different feasible
motion plans in a second and then select the plan that performs
best under the selected criterion.

We note that any sampling-based motion planner, including
our method, cannot guarantee that a globally optimal solution
will be found in a finite-time interval. Methods like RRT* [18]
can compute optimal motion plans as computation time is al-
lowed to increase, but cannot guarantee optimality in finite time
and will not be efficient for needle steering due to their re-
quirement of a solver for two-point boundary value problems.
Our method will explore the steerable needle’s state space and
repeatedly generate independent paths in search of a higher qual-
ity solution, and the best found path will progressively improve
over the duration of the time interval. A further advantage of our
approach is that it is trivially parallelizable, allowing for plan
quality to improve as the number of cores in modern multicore
architectures increases.

VI. EXPERIMENTAL SETUP

We describe our needle steering system, shown in Fig. 5, and
our experimental setup.
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Fig. 6. Characterization of the relationship α = h[κ] (3) for Needle 1 (0.92 mm diameter) and Needle 2 (0.88 mm diameter) in Sim-Test tissue phantom and
porcine tissue ex vivo. (a) Needle 1 in Sim-Test. (b) Needle 2 in Sim-Test. (c) Needle 2 in Porcine Tissue.

A. System Components

1) Bevel-Tip Steerable Needle: We use needles fabricated
from nitinol. In our experiments, we used two needles with tube
outer diameters of 0.92 and 0.88 mm, henceforth referred to as
Needle 1 and Needle 2, respectively. To enable steering at tight
curvatures, the needles 1) incorporate a hand-machined bevel
tip, and 2) are prebent just behind the bevel tip [30].

2) Needle Steering Robot: We use the needle steering robot
design proposed by Das et al. [9] to actuate the needle. The
needle is inserted through a hole in the front plate of the robot.
Buckling of the needle during insertion is prevented using an
external telescoping sheath [40]. Our planner, implemented in
C++, runs on a PC and sends the control inputs to the robot
controller via PCI bus.

3) Electromagnetic Tracking System: Accurate needle steer-
ing requires sensing the state of the needle tip position and
orientation. Approaches for accurate state estimation include
using stereo cameras [30], [40] or fluoroscopic images [22], but
these approaches either cannot be used in opaque media such as
the human body or can result in high radiation exposure to the
patient for longer procedures.

We use an electromagnetic tracking system (Aurora v1,
Northern Digital Inc., Waterloo, ON, Canada) [25] for track-
ing the needle tip pose. Embedded within the tip of the tube is a
5-degree-of-freedom (DOF) magnetic tracking coil, the position
and orientation of which (other than the roll about the needle
axis) can be measured by the system. In our setup, we used the
5-DOF sensor because its diameter is only 0.5 mm, enabling to
fit inside both steerable needles unlike the 6-DOF sensor which
has a 0.8 mm diameter. We estimate the roll of the needle us-
ing encoders on the servo motor that applies axial twists at the
needle base. Electromagnetic tracking is a cost effective and
noninvasive method for reliably sensing the state of the needle
tip in opaque tissue. The manufacturer specifications for the
standard deviation of the error in sensing the position along any
given axis is 0.7 mm and in sensing an angle is 0.2◦ [25].

B. Tissue Sample Materials

1) Tissue Phantom: We first evaluate our approach using a
tissue phantom composed of an animal-protein-based gel mar-
keted as the Simulated Muscle Tissue Ballistic Test Media (Sim-
Test) from Corbin, Inc. [7], which was used in prior needle steer-
ing experiments [40]. We cast the Sim-Test material, diluted
with water by a 5:1 ratio, into a cuboidal block of approximate

Fig. 7. (Left) Sim-Test tissue phantom. (Right) Porcine tissue ex vivo.

dimensions 11 cm × 7 cm × 15 cm for our experiments (see
Fig. 7).

2) Porcine Tissue: We also evaluate our approach in fresh
porcine tissue ex vivo. In our experiments, we used porcine loin
tissue of approximate dimensions of 10 cm × 5 cm × 19 cm. It
was inhomogeneous and comprised of both muscular and fatty
tissue types (see Fig. 7).

C. Needle Characterization

The approach presented in Section V requires that we charac-
terize the maximum curvature of the needle κ0 and the empirical
relationship h[κ] between the curvature κ and the duty cycling
factor α. We empirically determined that h[κ] is dependent on
the mechanical properties of the needle and the tissue and is
not necessarily linear as demonstrated by prior study with duty-
cycled needle steering in a gelatinous phantom [23].

To construct the relationship h[κ], we varied the value of α
between 0 and 1 in increments of 0.1. We then computed the
duration of the duty cycling interval δ for a time interval Δ = 1 s
(see Section IV). Given a fixed insertion speed vins and twist
speed ωspin , we commanded the actuators during each duty
cycling interval with control inputs computed by substituting
v = vins in (4) and ω̂ = 0 in (5).

The application of these controls causes the needle tip to
traverse a circular arc of variable curvature κ in a plane. We
performed repeated insertions of both needles for up to 10 cm
in both the Sim-Test tissue phantom and porcine tissue ex vivo.
We computed a best-fit polynomial curve with a fixed maximum
degree (=3) that minimized the sum of the squared errors of
the data points from the curve. This curve defines the relation-
ship α = h[κ]. An important point to note is that the smaller the
distance vinsδ traveled by the needle tip in every duty cycling
interval, the better the approximation of κ. However, we empir-
ically observed that for an insertion distance per duty cycling
interval of less than 0.5 cm, the effect of inserting the needle
without spinning was negligible, i.e., the effective curvature was
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Fig. 8. We perform experiments in a cuboidal shaped Sim-Test tissue phantom (see Fig. 7). We assume that the workspace contains obstacles (shown in yellow)
for planning purposes. We selected ten randomly chosen targets (shown in red) in the workspace that are are located at insertion depths ranging from 9 to 11.5 cm
from the face of the cuboidal block. The insertion location of the needle is marked in green and the needle is inserted into the face of the cuboidal block pointing
into the plane of the page. (a) Tissue Phantom Scene #1. (b) Tissue Phantom Scene #2. (c) Tissue Phantom Scene #3. (d) Tissue Phantom Scene #4.

close to 0. This is important because it physically limited the
interval lengths at which we could replan during closed-loop
steering to at least 0.5 cm.

To determine the effective curvature κ of the planar arc, we
recorded the state of the needle tip Xt = [ Rt p t

0 1 ] after the end of
each duty cycling interval for N such intervals. We observed that
the needle tip deviated from the plane because of initialization
errors and other sources of uncertainty. To robustly estimate κ,
we fit a circle to the set of 3-D points given by pt ∈ R3 , t =
0, . . . , N . We first computed a best-fit plane that minimized the
sum of the squared orthogonal distances from each point to the
plane by performing principal component analysis on the set of
points. We then projected the points onto the first two principal
components that span the plane and then robustly fit a circle
to the set of projected 2-D points [36]. The curvature κ was
obtained by taking the reciprocal of the radius of this circle.

Fig. 6 shows the relationship α = h[κ] for Needle 1 and
Needle 2 in Sim-Test tissue phantom and porcine tissue. Needle
1 achieved a maximum curvature κ0 = 0.11 cm−1 in Sim-Test
[see Fig. 6(a)]. Needle 2 had a lesser outer diameter (0.88 mm)
and achieved a maximum curvature of κ0 = 0.15 cm−1 in Sim-
Test and a maximum curvature of κ0 = 0.073 cm−1 in porcine
tissue [see Fig. 6(b) and (c)]. Fig. 6 also shows the best-fit curves
for h[κ] for each of the needle-tissue combinations considered.
In particular, we found that any value of α > 0.5 for duty-cycled
insertion in porcine tissue resulted in a 0 effective curvature,
which explains the lack of empirical data points in Fig. 6(c).

VII. EXPERIMENTAL EVALUATION

We evaluated our new needle steering system in tissue phan-
toms and porcine tissue ex vivo to demonstrate the ability to
steer needles to targets with clinically acceptable accuracy while
avoiding obstacles. For all the experiments described below, we
considered a spherical target region of 1 mm and measured
the targeting accuracy of the needle tip by computing the dis-
tance between the center of this spherical target region and
the final needle tip position after insertion. We executed the
motion planner on an Intel i7 3.33 Ghz PC. We set the replan-
ning interval Δ to 1 s and allocated 1 s of computation time
per replanning step, which is a sufficiently short-time interval
for clinical applications that require needle insertion depths of
≈10–15 cm.

A. Evaluation in Tissue Phantoms

We first evaluated our needle steering system in the Sim-Test
tissue phantom described in Section VI-B. We chose ten random
target regions in the workspace at distances ranging from 9 to
11.5 cm from the face of the cuboidal block through which the
needle is inserted, as shown in Fig. 8. To evaluate the accuracy of
the proposed system, we performed three insertions for each of
the 10 targets under closed-loop rapid replanning using Needle
1 (0.92 mm diameter) and the shortest path metric. We achieved
a mean targeting error of 1.07 mm (±0.59 mm).

To assess the impact of uncertainty, we also performed an
open-loop execution for each target and achieved an average
error of 9.57 mm (±2.95 mm). The open-loop execution results
show that, even for homogeneous tissue phantoms, perturbations
due to uncertainty can lead to large errors if not corrected. Our
rapid replanning approach significantly improves the targeting
accuracy by accounting for errors and perturbations as they
occur.

B. Evaluation in Tissue Phantoms With Obstacles

We next evaluated the needle steering system in the Sim-Test
tissue phantom with virtual (not physically embedded) obsta-
cles. We created four scenes, shown in Fig. 8, with virtual ob-
stacles. Scenes #1 and #2 contain spherical obstacles, which
obstruct the path to some of the considered targets. Scene #3
contains two box-like obstacles that create a narrow passage that
the needle must go through before reaching the targets. Scene
#4 is the most challenging since the obstacles create a narrow
passage and force the needle to traverse two-bend trajectories
around the obstacles to reach the targets.

We first evaluated our approach using three insertions for each
of the 10 targets in each scene. We used Needle 1 (0.92 mm di-
ameter) and the maximum clearance metric for these insertions.
The mean targeting error for each of the scenes was 1.24 mm
(±0.71 mm), 1.29 mm (±0.79 mm), 1.12 mm (±0.9 mm), and
1.25 mm (±0.84 mm), respectively. Even with obstacles that
restrict the navigable space in the environment, our approach
successfully steered the needle to the target region without col-
lisions in any of the insertions.

We also evaluated the impact of the selected metric (i.e., short-
est path or maximum clearance) on target accuracy and obstacle
avoidance for each scene. We used Needle 2 (0.88 mm diameter)
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Fig. 9. We compare the targeting error using closed-loop steering and open-
loop execution for each of the two metrics. Our closed-loop replanning approach
significantly outperforms open-loop plan execution. Error bars indicate one
standard deviation of targeting error over repeated trials.

Fig. 10. Impact of planning time on path quality for the shortest path metric
(top) and maximum clearance metric (bottom) in the tissue phantom scenes.

and chose 3 out of the 10 target regions in the workspace. For
the shortest path criterion, we enlarged all obstacles by a safety
buffer of ε = 5 mm. We performed three insertions for each
of the two criteria using our rapid replanning approach. Fig. 9
shows the means and standard deviations of the targeting error
for each metric. The maximum mean closed-loop rapid replan-
ning targeting error was 1.7 mm for the shortest path criterion
and 1.66 mm for the clearance criterion. To illustrate the impact
of uncertainty, we also ran the system using an open-loop plan
for each target and scene. For the open-loop insertions, the mean
targeting errors were as high as 10 mm for the shortest path cri-
terion and 9.1 mm for the clearance criterion. Our closed-loop
rapid replanning approach reduces targeting errors compared
with open-loop execution for both criteria.

We also evaluate the impact on path quality of the planning
time in a replanning interval. In Fig. 10, we illustrate for one

Fig. 11. We perform targeting experiments in a porcine tissue sample ex vivo.
We assume that the approximately cuboidal workspace contains virtual obstacles
(shown in yellow) for planning purposes. The insertion location of the needle
is marked in green and the needle is inserted into the face of the tissue sample
(pointing into the plane of the page). We selected 3 randomly chosen targets
(shown in red) in the workspace that are are located at insertion depths ranging
from 10 to 11 cm from the insertion face. (a) Porcine Tissue Scene #1. (b)
Porcine Tissue Scene #2.

target from each scene the impact of planning time on path length
when using the shortest path criteria, and the impact of planning
time on the minimum clearance from an obstacle when using
the maximum clearance criteria. As the planning time increases,
the method generates a larger number of feasible motion plans,
averaging over 500 plans at 1 s, over which to select the best plan.
The motion planner is able to find plans that perform better under
the chosen metric as planning time rises, but the improvement
in quality diminishes as computation time approaches 1 s.

C. Evaluation in Porcine Tissue

We also evaluated our rapid replanning approach in porcine
tissue samples ex vivo as shown in Fig. 7. We created two scenes
with virtual obstacles (shown in Fig. 11). The two scenes are
similar to scenes constructed earlier (see Fig. 8) and are modified
to take into account the different dimensions of the workspace.
We use two cylindrical obstacles in Scene #1 and two box-like
obstacles in Scene #2, which create a narrow passage and require
the needle to traverse two-bend trajectories around the obstacles
to reach the target regions.

We used Needle 2 (0.88 mm diameter) for this set of ex-
periments and considered 3 randomly chosen targets in the
workspace shown in Fig. 11. We evaluated the system for both
the shortest path and maximum clearance criteria in each of
these scenes using three insertions per target for each criterion.
For the shortest path criterion, we enlarged all obstacles by a
safety buffer of 5 mm. As before, we also execute the system
using an open-loop motion plan for each target for comparison.

Fig. 12 shows the mean targeting error and standard devia-
tions of the targeting error for each of the two criteria for steering
using our closed-loop rapid replanner and using an open-loop
plan. The mean targeting error for the shortest path criterion
for both scenes was 3.6 mm (±1.85 mm) for our closed-loop
rapid replanner and 10 mm (±2.6 mm) for open-loop steering.
The targeting errors are larger than in Sim-Test phantom tissue
because of the anisotropic nature of interaction between needle
and tissue and heterogeneity of the tissue sample. In spite of the
slightly larger errors, the targeting errors using our approach
are within clinically acceptable thresholds and are significantly
smaller than open-loop steering. The mean targeting error for
the clearance criterion for both scenes was 2.6 mm (±1.2 mm)
for our closed-loop rapid replanner and 15.6 mm (±3 mm) for
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Fig. 12. We compare the targeting error using closed-loop rapid replanning
steering and open-loop execution for the two proposed metrics in porcine tissue.
Our approach significantly outperforms open-loop execution. Error bars indicate
one standard deviation of the targeting error.

Fig. 13. Impact of planning time on path quality for the shortest path metric
(top) and maximum clearance metric (bottom) in the porcine tissue scenes.

open-loop steering. Two of the open-loop insertions collided
with the virtual obstacles. In contrast, our rapid replanning
approach steered the needle safely to the target region. In terms
of the metrics, we found that the maximum clearance criterion
worked better than the shortest path criterion because of the
narrow passage in the environment, which is further constricted
by imposing an artificial safety buffer in case of the shortest
path criterion.

We also evaluate the impact on path quality of the planning
time in a replanning interval for the porcine tissue scenes. In
Fig. 13, we illustrate for one target from each scene the impact
of planning time on path length when using the shortest path
criteria. We also illustrate the impact of planning time on the
minimum clearance from an obstacle when using the maximum

clearance criteria. As with the Sim-Test scenes, the motion plan-
ner finds plans that perform better under the chosen metric as
planning time rises, but the improvement in quality diminishes
as computation time approaches 1 s.

D. Evaluation in Anthropomorphic Liver Phantom

We apply our approach to an example scenario motivated by
the task of ablating a tumor in the liver while avoiding the hepatic
veins. We built the anthropomorphic liver phantom that models
the hepatic veins based on the hepatic vein anatomical model
provided by Desser et al. [10]. In this experiment, the obstacles
are physically embedded in a tissue phantom. We modeled the
major hepatic veins (middle, left, and right) and the inferior vena
cava using hollow tubing (see Fig. 14) so that the veins would be
visible on preoperative CT images. We constructed a tumor from
plastic that was roughly spherical and 5 mm in diameter. The
tumor model was coated with calcium sulfate to assure visibility
in the CT images. We placed the model veins, model tumor, and
fiducial markers for registration in a box, which we filled with
Sim-Test to create the anthropomorphic tissue phantom.

After the phantom was constructed out of Sim-Test material,
diluted with water by a 5:1 ratio, we used a portable flat-panel
CT scanner to obtain preoperative images of the environment
[see Fig. 14(b)]. We specified five insertion locations on the
surface of the box and specified five different target sites on
the tumor for ablation. We also segmented the major vessels
and the tumor from the CT scans to obtain obstacle meshes for
planning. We used Needle 2 (0.88 mm diameter) for this set
of experiments. For each pair of insertion location and target
region, we performed closed-loop steering using our rapid re-
planning approach using the maximum clearance criterion. We
did not perform open-loop steering in this experiment to avoid
damaging the needle in case it collided with the model veins
during the procedure.

In each instance, our rapid replanning approach successfully
steered the needle to the target region on the tumor surface while
avoiding the hepatic veins, with an average error of 2.38 mm
(±1.02 mm) over up to 15.5 cm insertion length.

VIII. CONCLUSION

We presented a new approach to automatic needle steering
to reach targets in 3-D environments while avoiding obstacles
and compensating for real-world uncertainties. Our approach
relies on rapid replanning, a new technique for 3-D closed-loop
needle steering that is based on a fast RRT motion planner for
steerable needles that uses variable-curvature kinematics and
a novel distance measure for planning. This planner allows us
compute many feasible motion plans per second, of which the
best plan is chosen for execution based on clinically motivated
metrics. Our approach eliminates the need for a separate feed-
back controller by accounting for perturbations as they occur
while simultaneously enabling obstacle avoidance.

We experimentally evaluated our approach by performing
procedures in tissue phantoms and porcine tissue ex vivo. Our
experimental results demonstrate that our rapid replanning ap-
proach successfully guides the needle to desired targets while
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Fig. 14. We applied our needle steering system with rapid replanning to an example scenario motivated by the task of ablating a tumor in the liver while avoiding
the hepatic veins. (a) We constructed an anthropomorphic liver phantom that includes the major hepatic veins in the liver (right) based on an anatomical model
provided in ([10, Fig. 1]). The model was built to a scale to match human liver dimensions and is shown next to a geometrically correct human liver model
manufactured based on segmented CT images of a human patient. (b) We placed the model in a container that was filled with Sim-Test material to create the
liver phantom for experiments. We used a portable flat-panel CT scanner to obtain preoperative images of the environment while the electromagnetic tracking
system provided measurements of the position and orientation of the needle tip during the procedure. (c) We specified the insertion location and target region and
annotated segmented structures such as veins that needed to be avoided. We illustrate feasible motion plans (shown in green) computed at time step 1. (d) Via rapid
replanning, our planner successfully guided the needle (reconstructed from CT scans after the procedure) between the middle and left hepatic veins to reach the
target on the surface of the tumor. (a) Hepatic veins model. (b) Experimental setup. (c) Plans computed at time step 1. (d) CT Reconstructed needle path.

avoiding obstacles with an average error of less than 3 mm,
which is within clinically acceptable thresholds and better than
the accuracy achieved by trained clinicians. The method cur-
rently relies on a relatively simple variable curvature kinematic
model, which suggests that a simple kinematic model cou-
pled with rapid replanning may be sufficient for many clinical
applications.

In future study, we plan to investigate options for further im-
proving accuracy. One avenue is to incorporate more detailed
models of the needle’s kinematic behavior, including needle
torsion models (e.g., extensions of [31]) while ensuring motion
planning is still sufficiently fast for rapid replanning. Another
avenue is to investigate methods for handling constant biases
that might arise due to incorrect sensor calibration (which cre-
ates offsets in the estimated tip pose) or incorrect estimation of
the needle curvature. The rapid replanning approach by itself
cannot fully correct for these types of systemic errors. For prob-
lems in which systemic errors may occur, we will investigate
automatically learning uncertain system parameters during exe-
cution using a Kalman filter or related framework. For example,
the system could estimate the needle curvature online by fitting
a curve to the most recent measurements of the needle tip posi-
tion and then using the latest estimated needle curvature in each
replanning interval.

In future study, we also plan to evaluate the rapid replanning
approach for specific clinical applications. New procedures in
the brain or in the abdominal cavity may require specialized
designs of asymmetric-tip needles [13], [22], and the rapid re-
planning approach should be applicable to these needle designs
since the underlying kinematic model is similar. For these appli-
cations, our rapid replanning approach could enable accurate tar-
geting while automatically avoiding anatomical obstacles such
as sensitive or impenetrable structures.
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