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Abstract— Automating repetitive surgical subtasks such as
suturing, cutting and debridement can reduce surgeon fatigue
and procedure times and facilitate supervised tele-surgery.
Programming is difficult because human tissue is deformable
and highly specular. Using the da Vinci Research Kit (DVRK)
robotic surgical assistant, we explore a “Learning By Observa-
tion” (LBO) approach where we identify, segment, and param-
eterize sub-trajectories (“surgemes”) and sensor conditions to
build a finite state machine (FSM) for each subtask. The robot
then executes the FSM repeatedly to tune parameters and if
necessary update the FSM structure. We evaluate the approach
on two surgical subtasks: debridement of 3D Viscoelastic Tissue
Phantoms (3d-DVTP), in which small target fragments are
removed from a 3D viscoelastic tissue phantom, and Pattern
Cutting of 2D Orthotropic Tissue Phantoms (2d-PCOTP), a
step in the standard Fundamentals of Laparoscopic Surgery
training suite, in which a specified circular area must be cut
from a sheet of orthotropic tissue phantom. We describe the
approach and physical experiments, which yielded a success
rate of 96% for 50 trials of the 3d-DVTP subtask and 70% for
20 trials of the 2d-PCOTP subtask.

I. INTRODUCTION

Robotic surgical assistants (RSAs), such as Intuitive Sur-
gical’s da Vinci R© system, have proven highly effective in
facilitating precise minimally invasive surgery [10, 36]. Cur-
rently, these devices are primarily controlled by surgeons
in a local tele-operation mode (master-slave with negligible
time delays). Introducing autonomy of surgical subtasks has
potential to assist surgeons, reduce fatigue, and facilitate
supervised autonomy for remote tele-surgery.

Multilateral manipulation (with two or more arms) has
potential to reduce the time required for surgical procedures,
reducing the time patients are under anaesthesia and asso-
ciated costs and contention for O.R. resources. Multilateral
manipulation is also necessary for sub-tasks such as suturing;
hand-off of tissue or tools between arms is common as each
arm has limited dexterity and a workspace that may not cover
the entire body cavity. Autonomous multilateral manipulation
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Fig. 1: Autonomous multilateral surgical subtasks with the da Vinci
Research Kit (DVRK). (a) Debridement of 3D Viscoelastic Tissue
Phantoms (3d-DVTP) and (b) Pattern Cutting of 2D Orthotropic
Tissue Phantoms (2d-PCOTP).

is of particular interest as surgical robot systems can be
configured with 3, 4, or more arms.

Automating manipulation and cutting presents challenges
due to the difficulty of modeling the deformation behavior
of highly nonlinear viscoelastic substances and the precision
required for cutting.

We apply “Learning By Observation” (LBO) to two sur-
gical subtasks relevant to surgical procedures: debridement
of viscoelastic tissue phantoms (3d-DVTP) and pattern cut-
ting of orthotropic deformable tissue phantoms (2d-PCOTP).
Surgical debridement is a tedious subtask in which dead
or damaged tissue is removed from the body to allow the
remaining healthy tissue to heal [13]. 2d-PCOTP is one
of five subtasks in the commonly-used Fundamentals of
Laparoscopic Surgery training suite. Surgical residents are
trained to perform precision pattern cutting, and it is used to
evaluate the performance of surgeons [12, 30].

We use the da Vinci Research Kit (DVRK) [15, 16], a
research platform built from mechanical components from
the first-generation da Vinci robotic surgical system [4]
and electronics and software from WPI and Johns Hopkins
University.

II. RELATED WORK

Robotic surgical systems have been used in a wide variety
of surgical interventions [1, 5, 22, 33, 37]. In this work, we
use the da Vinci Research Kit (DVRK) [15, 16], a research
platform built from mechanical components from the first-
generation of the da Vinci surgical system [4]. Padoy et
al. [26] demonstrated execution of a human-robot collab-
orative suturing task on the DVRK platform. The DVRK
platform has been used by a number of groups for tasks



Fig. 2: Debridement of a 3D Viscoelastic Tissue Phantom (3d-DVTP) with a linear tumor target. This subtask consists of five surgemes:
motion, penetration, grasping, retraction, and cutting. Multiple debridement operations are needed to remove a single target.

Fig. 3: Debridement of a 3D Viscoelastic Tissue Phantom (3d-DVTP) with spherical tumor targets. This subtask consists of five surgemes:
motion, penetration, grasping, retraction, and cutting. The same finite state machine is used as in Figure 2.

Fig. 4: Pattern Cutting of a 2D Orthotropic Tissue Phantom (2d-PCOTP). The finite state machine includes the following states: circle
detection and estimation, warping, grasp OTP (push, grasp, retract), notch cutting (push, close, retract, twist), lower semicircle positioning,
lower semicircle cutting, upper semicircle repositioning, upper semicircle cutting, active sensing for attachment detection (pull), and final
cutting.

like tissue palpation using an ultrasound probe for tumor
detection [6] and autonomous tool tracking in ultrasound
images using an auxiliary da Vinci arm [21]. We evaluate
the feasibility of autonomously performing surgical subtasks
that involve cutting of deformable tissue phantoms using
the DVRK. We consider debridement of viscoelastic tissue
phantoms, which extends our previous work in autonomous
debridement [17] with the Raven surgical robot [14], an
open-architecture research platform similar to the DVRK.

Manipulation of deformable materials, particularly cutting,
is an area of research interest in robotic surgery [23] and
in computer graphics and computational geometry [9, 38].
However, high fidelity models of viscoelastic tissue defor-
mations are computationally expensive due to the need for
re-meshing and finite element simulations.

Prior work has explored the use of expert demonstra-
tions to handle deformations in environment without ex-
plicit models and simulations. Reiley et al. [29] proposed a
demonstration-based framework that used Gaussian Mixture
Models (GMMs) for motion generation. Van den Berg et
al. [34] proposed an iterative technique to learn a reference
trajectory and execute it at higher than demonstration speeds

for suture knot tying. This work was recently extended
by Osa et al. [25] to deal with dynamic changes in the
environment, but with an industrial manipulator. Mayer et
al. [20] use principles of fluid dynamics and Schulman et
al. [31] use non-rigid registration techniques to generalize
human demonstrations to similar, yet previously unseen,
initial conditions. These approaches are broadly classified
under the category of Learning From Demonstrations (LfD)
[2, 8], where demonstration trajectories are directly modified
for generalizing to test situations. Learning By Observation
(LBO), as defined by Dixon [11], includes Learning From
Demonstrations (LfD) as one of the key components, as
described in Section IV.

III. SUBTASKS FOR CASE STUDY

A. Debridement of 3D Viscoelastic Tissue Phantoms (3d-
DVTP)

Surgical debridement is a tedious surgical subtask in
which dead or damaged tissue is removed from the body
to allow the remaining healthy tissue to heal faster [3, 13].
As shown in Figures 2 and 3, we introduce an extension to
the debridement task presented in our previous work [17].



We use a viscoelastic tissue phantom made from a mixture
of Elmer’s Glue, borax, and water. Embedded in the phantom
are multiple targets of viscoelastic material of a tougher
consistency. These targets represent damaged or tumorous
tissue that must be removed from the surrounding phantom.

Autonomous surgical debridement of viscoelastic tissue
requires perception to locate damaged tissue, grasp and
motion planning to determine collision free trajectories for
one or more arms and grippers to grasp them, and careful
coordination of arms to retract and separate the damaged
tissue from the VTP.

In this work, we consider targets that form convex regions,
and in particular regions that, after any debridement opera-
tion, the targets left still form one or more convex regions.
The maximum width of target material that can be removed
in one debridement operation is dw. We consider two types
of convex regions: spherical regions of diameter < dw, and
linear regions of width < dw.

B. Pattern Cutting of 2D Orthotropic Tissue Phantom (2d-
PCOTP)

The second subtask, 2d-PCOTP, is shown in Figure 4. The
Fundamentals of Laparoscopic Surgery (FLS) is the stan-
dard training regimen for medical students in laparoscopic
surgery and consists of a suite of five subtasks of increasing
complexity [30]. The second subtask in this suite is called
“Pattern Cutting”. This subtask features a 50 mm diameter,
2 mm thick circular pattern marked on a 4×4 inch square of
surgical gauze suspended by clips. The subtask is complete
once the circle has been cut from the surrounding gauze.

Metric: The FLS suite states that deviations under 2 mm
from the line are not penalized. We define an inner circle,
CI , and an outer circle, CO, at 2 mm inside and outside the
pattern, respectively. We define the error EI as the sum of
the areas between CI and the cut line falling inside CI , and
the error EO as the area between CO and the cut line falling
outside CO. With A the area of the annulus (Area of CO-
Area of CI ), we define the quality score as:

Q = 100
[
1− EI + EO

A

]
This quality corresponds to the symmetric difference of

the cut and the circle (as a percentage).

IV. LEARNING BY OBSERVATION

Learning By Observation (LBO) [11], involves observing
human-operated demonstrations of a subtask and segment-
ing these demonstrations into subtrajectories and transition
conditions. In contrast to the unsupervised learning used by
Dixon, we consider supervised learning in which the user
segments the trajectories.

Hager et al. propose a “Language of Surgery” with
“surgemes” analogous to phonemes [19, 28, 35]. Manual seg-
mentation of surgemes in demonstrations have been used for
understanding and recognizing surgical skills and subtasks,
and for evaluating surgeon skills [28, 35].

Our LBO approach is illustrated in Figure 5.

Fig. 5: The Learning By Observation process. First, a domain expert per-
forms a demonstration using teleoperation. Observation of the demonstration
is used to construct an FSM. Executions of the state machine are observed,
and human observation is used to determine if the revision of parameters,
state machine, or demonstration can feasibly improve performance.

V. SYSTEM ARCHITECTURE

A. da Vinci Research Kit (DVRK)

The da Vinci Research Kit (DVRK) is a development
platform provided by Intuitive Surgical to advance research
in teleoperated robotic surgical systems. It consists of propri-
etary hardware from the first-generation da Vinci “classic”,
and open-source electronics and software developed by WPI
and Johns Hopkins University [16]. The robot hardware
consists of two robotic laparoscopic arms, termed “Patient-
Side Manipulators” (PSMs), and the Surgeon Console for
teleoperating with a stereo viewer, two master controllers,
termed “Master Tool Manipulators” (MTMs), and a set of
foot pedals. The PSMs have interchangeable tools. We use
two tools: the Large Needle Driver and the Curved Scissors.
The Large Needle Driver is a grasper with 6 mm fingers.
The Curved Scissors is a cutting instrument 10 mm in length.
The PSM manipulates the attached instruments about a fixed
point called the remote center of motion. The PSMs each
have 6 degrees of freedom plus a grasp degree of freedom.

The electronics for the DVRK are provided by Fisher et
al. at WPI and Kazanzides et al. at Johns Hopkins University



Fig. 6: Software Architecture. The software consists of three
layers: vision, operation logic, and the DVRK system software.
The open-source DVRK software is developed and supported by
Johns Hopkins University [16]. The operation logic is based on
code developed for our previous work on the Raven surgical robot
[17], adapted for the da Vinci and the LBO framework. Our vision
system, as described in Section V-C, consists of two Prosilica GigE
GC1290C cameras with 6 mm focal length lenses and a 4.68 cm
separation.

as a replacement for the proprietary Intuitive Surgical elec-
tronics, which are not provided as a part of the DVRK. The
electronics entail a FPGA for centralized computation and
distributed I/O architecture while an IEEE-1394 (FireWire)
bus is used for a low-latency interface with the mechanical
hardware. These electronics, developed under an NSF grant,
are open-source and not specific to the da Vinci system. We
use a hardware mount designed by Okamura’s group.

B. System Software

Software to control the da Vinci hardware is provided
for the DVRK by JHU with their cisst/SAW libraries. This
component-based framework provides DVRK-specific com-
ponents to communicate with the electronics, along with
generic components to enable PID control, teleoperation,
recording, GUI development, and integration with ROS. The
changes to the DVRK made as part of this research are
openly shared with the DVRK community.

ROS [27] allowed us to easily port our software for the
Raven II open-source surgical robotics platform, used in our
previous work [17], to provide high-level state machines
and motion. The da Vinci and Raven kinematic chains
differ only in parameter values, which meant only the robot
model needed to be changed and the ROS communication
adapted for the DVRK’s different input API. The high level
architecture for our system is shown in Figure 6. We use
the inverse kinematics and PID controllers from the DVRK
system software. This allows us to control the robot using
pose commands, working directly in Cartesian space.

C. Vision System

Due to tissue specularity, perception using RGBD sensing
is not feasible. We use two fixed stereo camera pairs, each
composed of two Prosilica GigE GC1290C cameras with
6 mm focal length lenses and a 4.68 cm separation. We
use HSV (Hue, Saturation, Value) separation, where different

Fig. 7: Estimation of elliptical pattern on the Orthotropic Tissue
Phantom in the 2d-PCOTP subtask. Due to deformation, the pattern
is not a perfect ellipse. The perception process starts with a raw
image and uses HSV thresholding to find a contour of the pattern
outline. Then, stereo matching is performed to estimate the 3D
location of points along the left and right quadrants of the circle (a).
Finally, using the set of 3D points on the pattern boundary, an ellipse
is fit to these 3D points using least-squares (b).

materials occupy disjoint ranges in the color space. We use
a click interface to manually select pixels of each material
in view of the camera. For each of the materials, we find
a range of HSV values that contains all of its pixels, while
excluding the HSV values of pixels from other materials,
which for the subtasks in this work was always possible
due to a small number of different materials, the color of
which we had control over. We perform this process after
any change to the material properties or lighting conditions.
We use the open-source OpenCV library [7].

VI. ALGORITHMIC APPROACH

A. Debridement of 3D Viscoelastic Tissue Phantom (3d-
DVTP)

In the 3d-DVTP subtask, we first find the 3D centroids of
the targets. To do this, we find the 2D centroids of each target
in each of the left and right stereo images. For each image,
we use HSV separation to find the pixels corresponding to
the VTP. We use this as a bounding box to find the pixels
of targets.

We use OpenCV to find the contours among the target pix-
els, rejecting contours that contain less than p1 = 100 pixels.
These contours often have holes, which impairs the centroid
estimation of the contours. To remove holes in contours, we
first apply dilation: for each pixel in the image, a square
window with p2 = 3 pixels per side is taken, and the value
of the center pixel is taken to be the maximum value of all
the pixels in the window. This “dilates” the targets in the
image.

For each contour in each of the two stereo images, we
find the centroid. We take the left-most centroid in the left
image and find the corresponding centroid in the right image
based on a sliding window. The resulting disparity gives the
3D centroid. We repeat this procedure until all matching
centroids have been found. If no matching centroids are
found, we consider the subtask to be complete, unless no
targets have been debrided, in which case we consider the
subtask to have failed.

Through teleoperation, we found that the surgemes neces-
sary for debridement of the VTP were well-represented by
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Fig. 8: Finite State Machine for 2d-PCOTP. This subtask consists of ten states, with the surgemes for states noted in parentheses: circle
detection and estimation, warping, grasp tissue (push, grasp, retract), notch cutting (push, close, retract, twist), lower semicircle positioning,
lower semicircle cutting, upper semicircle repositioning, upper semicircle cutting, active sensing for attachment detection (pull), and final
cutting. The iteration limit N is the parameter of the finite state machine p9,3 = 2.

linear paths. The debridement task consists of five surgemes:
motion, penetration, grasping, retraction, and cutting, with
parameter vector p = (p1, . . . , p9), with p1 and p2 the vision
parameters given above.

The motion surgeme consists of moving the gripper to a
point p3 = 1.2 cm directly above the target. The penetration
surgeme moves vertically down until the tips of the gripper
fingers are approximately p4 = 4 mm into the tissue. The
grasping surgeme is the closure of the gripper on the target
without movement. The retraction surgeme pulls the target
and surrounding material p5 = 3 cm vertically. In the cutting
surgeme, the cutting tool moves until the tips of the cutting
tool are p6 = 4 mm past the center of the retracted material,
p7 = 2.8 cm below the gripper and then the scissors are
closed. In the final discarding surgeme, the removed material
is dropped into a receptacle.

For the retraction surgeme, the gripper moves at a speed
of p8 = 0.5 cm/s to prevent the VTP material from snapping.
For the other surgemes, the tools move at p9 = 3 cm/s.

B. Pattern Cutting of 2D Orthotropic Tissue Phantom (2d-
PCOTP)

Using LBO, we construct the finite state machine shown
in Figure 8. Each state may execute multiple surgemes, and
may have one or more parameters. We identified ten states,
two sensor conditions, and thirteen surgemes.

1) Circle Detection and Estimation: The first state is
Circle Detection and Estimation. In this state, we find the
3D position of the circle pattern.

We find the outer contour of the circle using thresholding
and a dilation step similar to the one in Section VI-A, but
with a p1,1 = 5 pixel window for a greater dilation effect
due to the larger size of the contour. We then fit an ellipse
to the circle contour. To find 3D points that we can use
for ellipse fitting from the contour of the image, we find
correspondences between the contours in the left and right
stereo images. We begin by finding the leftmost pixel in the
left contour, which we call the anchor pixel. We take the

intersection of the left and right contours with p1,2 = 15
horizontal lines across each image. One of these lines in
through the anchor pixel. All lines are spaced p1,3 = 15 pix-
els apart, with seven above and seven below the anchor pixel.
Each line produces a pair of intersections with the contour in
each image, which are matched with the corresponding pair
in the other image, giving two 3D points (see Figure 7a).
Because the stereo cameras are separated horizontally, it is
difficult to get stereo correspondence for points along the top
and bottom areas of the circle. We assume that all the points
lie in the horizontal plane, so the points are projected onto
that plane. We then use least squares to fit an ellipse to the
points in the plane (see Figure 7b).

2) Warping: LBO contains a trajectory translation step,
which we include as part of our finite state machine. In this
step, we find a rigid translation between the circle pattern
detected for the demonstration and the current circle pattern
as detected in the previous state. This allows us to translate
our surgeme trajectories to the new environment.

We manually set bounds on the translation to ensure safety
of the resulting trajectories. Due to the close proximity of
the OTP fixtures, translation in the y direction was limited to
p2,1 = 5 mm. If the transformation produced by the previous
state was beyond these bounds, the system reports failure.

3) Grasp Tissue: The third state, Grasp Tissue, has the
purpose of pulling the OTP taut to allow the cutting tool
to make an incision. We used demonstration surgemes for
this state. We observed three surgemes in the demonstration.
First, the open gripper pushes the material down until it
contacts the surface below. Then, the gripper closes, folding
and grasping a section of the OTP. Finally, the gripper lifts
vertically to pull the OTP taut. This forms a ridge, which the
cutting tool takes advantage of to cut a notch in the material,
as can be seen in Figure 4a.

4) Cut Notch: The fourth state, Cut Notch, is the most
complicated of the demonstration trajectories. The FLS rules
allow a surgeon to either cut a notch to begin the subtask or
to cut in from the edge.



We observed a cycle of surgemes in the demonstration.
First, with the cutting tool open, the tool pushes down on the
OTP. Second, the cutting tool closes. Third, the cutting tool
retracts. This process is repeated three times. However, on
the second execution, after retraction, a complicated twisting
maneuver was observed in the demonstrations.

5) Reposition into Notch for Lower Semicircle: The fifth
state, Reposition into Notch for Lower Semicircle, uses a
single demonstration surgeme. We observed that this trajec-
tory approached the notch along the line that it would start
cutting.

6) Cut Lower Semicircle: The sixth state, Cut Lower
Semicircle, uses a single demonstration surgeme. The
surgeme cuts along the lower arc of the pattern approxi-
mately halfway around.

7) Reposition into Notch for Upper Semicircle: The sev-
enth state, Reposition into Notch for Upper Semicircle, uses
a single demonstration surgeme. Similar to the earlier reposi-
tioning, the demonstration trajectory slowly approached the
point to be cut along the line of cutting.

8) Cut Upper Semicircle: The eighth state, Cut Up-
per Semicircle, uses a single demonstration surgeme. The
surgeme cuts along the lower arc of the pattern approxi-
mately halfway around.

9) Check for Attachment: The ninth state, Check for
Attachment, occurs at the end of the Cut Upper Semicircle
state. It combines two sensor measurements with a single
surgeme. The purpose of the state is to determine if the circle
pattern has been successfully separated from the surrounding
OTP. To determine this, we use active sensing to attempt to
deform the OTP by moving the circle. First, we image a
p9,1 = 260× 200 pixel window at a known offset from the
center of the circle. This window falls on the left edge of
the OTP. Then, the gripper moves 8 mm to the right (that is,
away from the left edge). Finally, we re-image the window.
Then, we use the matchTemplate function of OpenCV
to compute a difference metric for the two images [24].
Repeated observations guide us to set the threshold at p9,2 =
0.9 for determining that the edge has not moved.

If the edge has not moved, the state machine terminates,
reporting success. If the edge has moved, we judge that
the circle pattern has not been successfully separated, and
so we attempt the last state, Final Cutting. This forms a
loop, re-checking the attachment after the Final Cutting state.
However, this loop is executed a maximum of two times. If
the circle is judged to attached after p9,3 = 2 Final Cutting
attempts, the state machine terminates, declaring failure.

10) Final Cutting: The tenth state is Final Cutting, which
consists of a single surgeme comprising a multi-arm ma-
neuver. The cutting tool moves p10,1 = 2 cm forward
(that is, continuing along the arc it started with Cut Upper
Semicircle). To avoid colliding with the gripper arm, the
gripper arm moves p10,2 = 1.5 cm in the same direction,
and p10,3 = 1 cm towards the cutting tool.

Trial Length Outcome Retrac- Cut Time (s)
(mm) tions Failures Total Mean

1 21 Success 3 0 70 20.3
2 22 Success 3 0 70 20.3
3 27 Success 3 0 73 21.3
4 27 Success 4 1 94 20.5
5 24 Success 3 0 73 21.3

76 20.8

TABLE I: Results for 3d-DVTP with linear tumor targets. We
performed five trials, all of which succeeded in fully debriding the
targets. Four trials required three retractions to complete, while one
required four retractions and also experienced a cut failure. The
average total time was 76 seconds, with a standard deviation of
10.2. The mean time of debridement per target was 20.8 seconds.

Trial Targets Failures Time (s)
Detection Cut Total Mean

1 5 0 0 128 23.2
2 5 0 0 127 23.0
3 5 0 0 125 22.6
4 5 0 0 128 23.2
5 5 0 0 128 23.2
6 5 0 0 127 23.0
7 5 1 1 103* 23.5
8 5 0 0 125 22.6
9 5 0 0 125 22.6

10 5 0 0 124 22.4
50 1 1 — 22.3

TABLE II: Results for 3d-DVTP with spherical tumor targets 2 mm
in diameter. Ten trials were performed, with five targets in each trial.
In nine of the ten trials, all five targets were successfully debrided.
In the remaining trial, the fourth target experienced a cut failure,
where target was not entirely severed from the VTP. Subsequent
to this, the fifth target failed to be detected. This detection failure
caused the total time, marked above by *, to be lower than other
trials. The total success rate was 48 out of 50 targets, or 96%. The
average time per target was 25.3 seconds. The adjusted mean was
22.3 seconds.

VII. EXPERIMENTAL EVALUATION

A. Debridement of 3D Viscoelastic Tissue Phantom (3d-
DVTP)

Using the FSM from Section VI-A, we performed the 3d-
DVTP subtask with two kinds of tumor targets: linear and
spherical.

1) Linear Tumor Targets: We used targets of lengths be-
tween 21 and 27 mm. We ran 5 trials with the targets in four
different orientations. Four trials required three retractions to
complete, while one required four retractions. The average
total time was 76 seconds, with a standard deviation of 10.2.
The mean time of debridement per target was 20.8 seconds.

2) Spherical Tumor Targets: We performed a randomiza-
tion procedure to place spherical targets in the VTP. The
debris was placed on the VTP using randomly-generated
coordinates. Using the visual segmenting described in Sec-
tion V-C, we uniformly sampled a rectangle containing
the VTP contour and kept only samples falling inside the
contour. We also rejected samples falling within 40 pixels
of existing samples, so that the targets were not too close
together. The coordinates were overlaid on the picture, and
this was used to place the targets in the VTP.

We performed 10 trials with 5 spherical targets each. The



Trial Success Score Failed Transl. (mm) Total
State x y Time

Demonstration 99.86 0.0 0.0 263
1 Success 99.81 — 26.4 -1.0 284
2 Failure — Notch 2.0 -0.5 130*
3 Failure — Notch 1.2 -3.0 120*
4 Success 94.52 — 4.5 -2.1 289
5 Failure — L.S. 2.0 -1.4 115*
6 Success 97.32 — -1.2 -2.2 283
7 Success 99.12 — 4.0 -0.9 282
8 Failure — Notch 3.6 -0.9 131*
9 Failure —- U.S. 8.1 0.2 248*

10 Success 98.89 — 5.6 -0.4 279
11 Failure —- Notch 8.5 -1.8 129*
12 Success 99.87 — 5.6 -0.8 279
13 Success 100.00 — 6.6 0.4 284
14 Success 99.96 — 2.3 -1.6 285
15 Success 99.86 — 3.0 0.3 283
16 Success 98.96 — 9.3 -0.4 284
17 Success 98.39 — 8.5 -0.7 285
18 Success 98.94 — 10.5 -0.7 284
19 Success 98.85 — 9.3 0.5 284
20 Success 99.98 — 6.8 0.8 284

Mean 70% 98.89 6.5 1.0 284
Std. Dev. 1.47 5.6 0.8 2.5

TABLE III: Results for 2d-PCOTP. Twenty trials were performed,
with a 70% success rate. The mean completion time for the
successful trials (excluded times marked with an asterisk) was
284 seconds, less than the required limit of 300 seconds. The mean
quality of successful trials was 99.89. For the Failed State column,
“L.S.” and “U.S” stand for the Lower and Upper Semicircle Cutting
states, respectively. The average translation of the circle from its
position in the demonstration was 6.5 mm in the x direction and
1.0 mm in the y direction.

results are shown in Table II. We measured the total runtime
of the debridement, from which the mean per-target time was
calculated.

In nine of the ten trials, all five targets were successfully
debrided. In the remaining trial, the fourth target experienced
a cut failure. Subsequent to this, the fifth target failed to be
detected. The total success rate was 48 out of 50 targets,
or 96%. The mean time of debridement per target was
22.3 seconds.

B. Pattern Cutting of Orthotropic Tissue Phantom (2d-
PCOTP)

For 2d-PCOTP, we used the equipment from the FLS kit
using one layer of gauze.

Using the FSM and parameter vector, the system per-
formed 20 trials. The translation in the circle from its position
during the demonstration, as detected by our ellipse-fitting
algorithm, was up to 26.4 mm in the x direction (left to right),
and up to 3 mm in the y direction, with an average of 6.5 mm
and 1.0 mm, respectively. This was very constrained by the
clips holding the material in place, which the tool approaches
closely in the demonstration trajectory.

The results are shown in Table III. Of the six trials that
failed, four of these failed in the fourth state, notch cutting.
One trial failed for each of the upper and lower semicircle
cutting states due to the deformation of the material not
matching the deformation experienced during the demonstra-
tion. The average execution time for the successful trials was

284 seconds, with a standard deviation of 2.5 seconds. The
variation in time was due to differences in the execution
of the final state. All of the trials completed in under
300 seconds. In FLS, “expert proficiency” is granted when
the task is completed in 162 seconds with no errors [12].

We found the average quality to be 99.89, with a standard
deviation of 1.47. This is slightly higher than the quality of
the demonstration, which was 99.86. The minimum quality
of the autonomous system for a successful trial was 94.52.

VIII. CONCLUSION AND FUTURE WORK

Initial experiments suggest that thse subtasks can be
reliably automated using LBO but performance times are
at least twice as slow as expert human teleoperation. The
next steps are to continue parameter tuning to further reduce
execution time, extend the vision system to allow denser
arrangements of tumor targets, develop analytic models of
deformable tissue, and apply the LBO framework to other
FLS subtasks, axillary dissection [18], and cardiothoracic
vein harvesting [32].

ACKNOWLEDGMENTS

We thank our collaborators, in particular Allison Oka-
mura, Greg Hager, Blake Hannaford, and Jacob Rosen. We
thank Intuitive Surgical, and in particular Simon DiMao,
for making the DVRK possible. We also thank the DVRK
community, including Howie Choset, Anton Deguet, James
Drake, Greg Fisher, Peter Kazanzides, Tim Salcudean, Nabil
Simaan, and Russ Taylor. We also thank Aliakbar Toghyan,
Barbara Gao, Raghid Mardini, and Sylvia Herbert for their
assistance on this project. This work is supported in part by
a seed grant from the UC Berkeley Center for Information
Technology in the Interest of Science (CITRIS), by the
U.S. National Science Foundation under Award IIS-1227536:
Multilateral Manipulation by Human-Robot Collaborative
Systems, by AFOSR-YIP Award #FA9550-12-1-0345, and
by Darpa Young Faculty Award #D13AP00046.

REFERENCES

[1] R. Alterovitz and K. Goldberg, Motion Planning in Medicine:
Optimization and Simulation Algorithms for Image-guided
Procedures. Springer, 2008.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A
survey of robot learning from demonstration,” Robotics and
Autonomous Systems, vol. 57, no. 5, pp. 469–483, 2009.

[3] C. E. Attinger, E. Bulan, and P. A. Blume, “Surgical debride-
ment: The key to successful wound healing and reconstruc-
tion,” Clinics in podiatric medicine and surgery, vol. 17, no. 4,
p. 599, 2000.

[4] G. Ballantyne and F. Moll, “The da Vinci Telerobotic Sur-
gical System: The Virtual Operative Field and Telepresence
Surgery,” Surgical Clinics of North America, vol. 83, no. 6,
pp. 1293–1304, 2003.

[5] R. A. Beasley, “Medical Robots: Current Systems and Re-
search Directions,” Journal of Robotics, vol. 2012, 2012.

[6] S. Billings, N. Deshmukh, H. Kang, R. Taylor, and E. Boctor,
“System for Robot-Assisted Real-Time Laparoscopic Ultra-
sound Elastography,” in SPIE Medical Imaging, 2012.

[7] G. Bradski and A. Kaehler, Learning OpenCV: Computer
vision with the OpenCV library. O’Reilly, 2008.



[8] S. Calinon, “Robot Programming by Demonstration,” in
Springer handbook of robotics, 2008, pp. 1371–1394.

[9] N. Chentanez, R. Alterovitz, D. Ritchie, L. Cho, K. Hauser,
K. Goldberg, J. R. Shewchuk, and J. F. O’Brien, Interactive
Simulation of Surgical Needle Insertion and Steering, 2009,
vol. 28, no. 3.

[10] S. A. Darzi and Y. Munz, “The impact of minimally invasive
surgical techniques,” in Annu Rev Med., vol. 55, 2004, pp.
223–237.

[11] K. Dixon, “Inferring User Intent for Learning by Observation,”
Ph.D. dissertation, Carnegie Mellon University, 2004.

[12] G. Dulan, R. V. Rege, D. C. Hogg, K. M. Gilberg-Fisher,
N. A. Arain, S. T. Tesfay, and D. J. Scott, “Developing a
comprehensive, proficiency-based training program for robotic
surgery,” Surgery, vol. 152, no. 3, pp. 477–488, 2012.

[13] M. Granick, J. Boykin, R. Gamelli, G. Schultz, and M. Tenen-
haus, “Toward a common language: Surgical wound bed
preparation and debridement,” Wound repair and regeneration,
vol. 14, no. s1, pp. 1–10, 2006.

[14] B. Hannaford, J. Rosen, D. C. Friedman, H. King, P. Roan,
L. Cheng, D. Glozman, J. Ma, S. Kosari, and L. White,
“Raven-II: An open platform for surgical robotics research,”
IEEE Transactions on Biomedical Engineering, vol. 60, pp.
954–959, Apr. 2013.

[15] Intuitive Surgical, “da Vinci Research Kit,” 2014. [Online].
Available: http://research.intusurg.com/dvRK

[16] P. Kazanzides, Z. Chen, A. Deguet, G. Fischer, R. Taylor,
and S. DiMaio, “An Open-Source Research Kit for the da
Vinci Surgical System,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2014.

[17] B. Kehoe, G. Kahn, J. Mahler, J. Kim, A. Lee, A. Lee,
K. Nakagawa, S. Patil, W. Boyd, P. Abbeel, and K. Goldberg,
“Autonomous Multilateral Debridement with the Raven Surgi-
cal Robot,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), 2014.

[18] S. M. Lim, C. K. Kum, and F. L. Lam, “Nerve-sparing
Axillary Dissection using the da Vinci Surgical System,”
World Journal of Surgery, vol. 29, no. 10, pp. 1352–1355,
2005.

[19] H. C. Lin, I. Shafran, D. Yuh, and G. D. Hager, “Towards
Automatic Skill Evaluation: Detection and Segmentation of
Robot-assisted Surgical Motions,” Computer Aided Surgery,
vol. 11, no. 5, pp. 220–230, 2006.

[20] H. Mayer, I. Nagy, D. Burschka, A. Knoll, E. Braun, R. Lange,
and R. Bauernschmitt, “Automation of Manual Tasks for
Minimally Invasive Surgery,” in Int. Conf. on Autonomic and
Autonomous Systems, 2008, pp. 260–265.

[21] O. Mohareri, P. Black, and S. E. Salcudean, “da Vinci
Auxiliary Arm as a Robotic Surgical Assistant for Semi-
Autonomous Ultrasound Guidance during Robot-Assisted
Laparoscopic Surgery,” in Hamlyn Symposium on Medical
Robotics (HSMR), 2014.

[22] G. Moustris, S. Hiridis, K. Deliparaschos, and K. Konstan-
tinidis, “Evolution of Autonomous and Semi-Autonomous
Robotic Surgical Systems: A Review of the Literature,” Int.
Journal of Medical Robotics and Computer Assisted Surgery,
vol. 7, no. 4, pp. 375–392, 2011.

[23] H.-W. Nienhuys and A. F. van der Stappen, “A surgery simula-
tion supporting cuts and finite element deformation,” in Med-
ical Image Computing and Computer-Assisted Intervention–
MICCAI 2001. Springer, 2001, pp. 145–152.

[24] OpenCV, “Template matching.” [Online]. Avail-
able: http://docs.opencv.org/doc/tutorials/imgproc/histograms/
template matching/template matching.html

[25] T. Osa, N. Sugita, and M. Mamoru, “Online Trajectory Plan-
ning in Dynamic Environments for Surgical Task Automa-
tion,” in Robotics: Science and Systems (RSS), 2014.

[26] N. Padoy and G. Hager, “Human-Machine Collaborative
Surgery using Learned Models,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2011, pp. 5285–5292.

[27] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source
Robot Operating System,” in ICRA Workshop on Open Source
Software, 2009.

[28] C. E. Reiley and G. D. Hager, “Task versus Subtask Surgical
Skill Evaluation of Robotic Minimally Invasive Surgery,” in
Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI), 2009, pp. 435–442.

[29] C. E. Reiley, E. Plaku, and G. D. Hager, “Motion generation of
robotic surgical tasks: Learning from expert demonstrations,”
in Engineering in Medicine and Biology Society (EMBC),
2010 Annual International Conference of the IEEE. IEEE,
2010, pp. 967–970.

[30] E. Ritter and D. Scott, “Design of a proficiency-based skills
training curriculum for the fundamentals of laparoscopic
surgery,” vol. 14, no. 2, pp. 107–112, 2007.

[31] J. Schulman, A. Gupta, S. Venkatesan, M. Tayson-Frederick,
and P. Abbeel, “A Case Study of Trajectory Transfer through
Non-Rigid Registration for a Simplified Suturing Scenario,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2013, pp. 4111–4117.

[32] K. D. Stahl, W. D. Boyd, T. A. Vassiliades, and H. L.
Karamanoukian, “Hybrid Robotic Coronary Artery Surgery
and Angioplasty in Multivessel Coronary Artery Disease,” The
Annals of thoracic surgery, vol. 74, no. 4, pp. 1358–1362,
2002.

[33] R. Taylor, A. Menciassi, G. Fichtinger, and P. Dario, “Medical
Robotics and Computer-Integrated Surgery,” Springer Hand-
book of Robotics, pp. 1199–1222, 2008.

[34] J. Van Den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan,
X. Fu, K. Goldberg, and P. Abbeel, “Superhuman Performance
of Surgical Tasks by Robots using Iterative Learning from
Human-Guided Demonstrations,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2010, pp. 2074–2081.

[35] B. Varadarajan, C. Reiley, H. Lin, S. Khudanpur, and
G. Hager, “Data-derived Models for Segmentation with Ap-
plication to Surgical Assessment and Training,” in Medical
Image Computing and Computer-Assisted Intervention (MIC-
CAI), 2009, pp. 426–434.

[36] R. Veldkamp, E. Kuhry, W. Hop, J. Jeekel, G. Kazemier, H. J.
Bonjer, E. Haglind, L. Pahlman, M. A. Cuesta, S. Msika, et al.,
“Laparoscopic surgery versus open surgery for colon cancer:
short-term outcomes of a randomised trial,” Lancet Oncol,
vol. 6, no. 7, pp. 477–484, 2005.

[37] A. Wolf and M. Shoham, “Medical Automation and Robotics,”
in Springer Handbook of Automation, 2009, pp. 1397–1407.

[38] H. Zhang, S. Payandeh, and J. Dill, “On Cutting and Dissec-
tion of Virtual Deformable Objects,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), vol. 4, 2004, pp. 3908–
3913.

http://research.intusurg.com/dvRK
http://docs.opencv.org/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
http://docs.opencv.org/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf

	Introduction
	Related Work
	Subtasks for Case Study
	Debridement of 3D Viscoelastic Tissue Phantoms (3d-DVTP)
	Pattern Cutting of 2D Orthotropic Tissue Phantom (2d-PCOTP)

	Learning By Observation
	System Architecture
	da Vinci Research Kit (DVRK)
	System Software
	Vision System

	Algorithmic Approach
	Debridement of 3D Viscoelastic Tissue Phantom (3d-DVTP)
	Pattern Cutting of 2D Orthotropic Tissue Phantom (2d-PCOTP)
	Circle Detection and Estimation
	Warping
	Grasp Tissue
	Cut Notch
	Reposition into Notch for Lower Semicircle
	Cut Lower Semicircle
	Reposition into Notch for Upper Semicircle
	Cut Upper Semicircle
	Check for Attachment
	Final Cutting


	Experimental Evaluation
	Debridement of 3D Viscoelastic Tissue Phantom (3d-DVTP)
	Linear Tumor Targets
	Spherical Tumor Targets

	Pattern Cutting of Orthotropic Tissue Phantom (2d-PCOTP)

	Conclusion and Future Work

