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Abstract— Accurate needle insertion in 3D environment is
always a grand challenge. When multiple targets are located
in the tissue, a procedure of inserting multiple needles from a
single small region on the patient’s skin, so called “fireworks”
insertion as shown in Fig. 1, can be executed to further
reduce trauma on the patient. In this paper, we explore motion
planning for “fireworks” needle insertion in 3D environment s
by developing an algorithm based on the Forest of Rapidly-
exploring Random Trees (RRTs). Given a set of targets, we
propose an algorithm to quickly explore the configuration
space by building a forest of RRTs and find feasible plans
for multiple steerable needles from a single entry region.
With different optimality considerations, we present two path
selection algorithms to optimize the final plan among all feasible
outputs. Finally, we implement the algorithm in an approximate
prostate cancer treatment environment and simulation results
demonstrate the performance of the proposed algorithm.

I. I NTRODUCTION

Due to lack of maneuverability, limited visibility, and
possible obstructions between the needle entry point and the
target zone, accurate insertion of flexible steerable needle is
still a challenge [1]. Researchers at Johns Hopkins Univer-
sity and the University of California, Berkeley have been
developing a new class of highly flexible, bevel-tip needles,
which offers improved mobility and manipulability, which
enable them to reach previously inaccessible targets while
avoiding sensitive or impenetrable areas [2], [3].

Motion planning for bevel-tip steerable needle has been
studied in many ways in two-dimensional image planes [3],
[4]. Motions of the steerable needle in 3D workspace are
both nonholonomic and underactuated because of its bevel-
tip design. To generate its path, the needle need to execute
more flexible rotations, instead of the bevel-left/bevel-right
strategy in 2D. Moreover, when multiple targets are located
in the workspace, a “fireworks” insertion treatment [5] may
be executed to insert multiple needle from a single entry
region to reach all targets, which will reduces trauma on
the patient but increases the difficulty of motion planning.
Whereas prior work has focused on motion planning for a
single steerable needle from a single start state to a single
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Fig. 1. An example of ”fireworks” steerable needle insertion: 5 needles are
inserted from very small entry region to reach 5 targets in the workspace
while avoiding collision with the obstacles.

goal state, here we will introduce an algorithm to efficiently
plan paths for this “fireworks” insertion.

This paper aims to use sampling-based motion planning
techniques to explore motion planning of “fireworks” in-
sertion with the bevel-tip steerable needles in 3D environ-
ments with obstacles. Inspired by the well-known Rapidly-
exploring Random Trees (RRTs), we develop a motion plan-
ning algorithm to quickly grow a forest of RRTs to explore
the configuration space and find feasible paths for all targets.
With different optimality considerations, we present two path
selection algorithms to optimize the final plan among all
feasible outputs. With an approximated real environment, we
implement our algorithm and simulation results demonstrate
its performance.

II. RELATED WORK

It has been shown that the bevel-tip needle design sig-
nificantly affects the needle bending forces during insertion
[6]. Based on this observation, Webster et al. [7] showed
experimentally that steerable bevel-tip needles follow paths
of constant curvature in the direction of the bevel-tip, and
the radius of that curvature is not significantly affected by
the insertion velocity. They also developed a nonholonomic
model of the needle’s motion in stiff tissues based on a
generalized bicycle model and fit model parameters using
experiments with tissue phantoms [8].

Incorporating the effects of tissue deformations and mo-
tion uncertainties, motion planning for steerable bevel-tip
needles in a 2D workspace has been studied in many
ways. By modeling the bevel tip needle’s motion in a 2D
workspace as a non-reversible Dubins car, Alterovitz et al.[9]
formulated the 2D steerable needle motion planning problem



as a nonlinear optimization problem that uses a simulation
of tissue deformation during needle insertion as a function
in the optimization. To consider motion uncertainties due to
needle/tissue interaction, they further formulated the motion
planning problem as a Markov Decision Process (MDP) [3],
[10] and proposed the Stochastic Motion Roadmap (SMR)
to search for the plan with most probability of success [11].

For clinical implementation, research on steerable needle
insertion has been extended to more complex 3D environ-
ments in many different ways [12][13]. By representing the
bevel-tip needle’s 3D motion as a screw motion, Duindam
et al. [14] formulated 3D motion planning problem for the
steerable needle as a dynamical optimization problem with
a discretized control space. Based on the inverse kinemat-
ics and the self-motion manifold of the steerable needle,
they also presented a local motion planning algorithm for
steerable needle in 3D environment by solving the Paden-
Kahan subproblems [15]. Inspired by the Rapidly-exploring
Random Tree (RRTs) algorithms, Xu et al. [16] developed
the first specific 3D sampling-based motion planner for
the steerable needle insertion, which efficiently builds a
global tree to quickly and probabilistically explore the entire
workspace and search for a feasible plan.

The Rapidly-exploring Random Tree (RRTs), which was
first introduced by LaValle [17], is a successful roadmap-
based motion planning techniques and has shown its potential
in dealing with motion planning problems for nonholonomc
systems [18]. It incrementally grows a tree toward the target
configuration by searching feasible paths in the configuration
space, and provides an efficient and quick search in complex
environments of high dimensions with different constraints
[18]. Based on the original RRTs structure, many variants
have been developed to improve the efficiency of searching
[19], extend RRTs to more complex configuration space (C-
space) [20], and enhance the ability to explore difficult region
in searching environment [21]. Knepper et al. [22] exper-
imentally studied the relationship between path sampling
strategy and mobile robot performance, and showed that
different deterministic samplings of path sets led to different
performances of motion planners for mobile robots. In this
paper, we extend our RRT-inspired algorithms developed in
[16] and propose an RRT-forest exploration strategy together
with an plan selection algorithm to efficiently solve the
motion planning problem for the “fireworks” insertion.

III. PROBLEM STATEMENT

We make the following reasonable assumptions in order
to obtain a well defined problem. First, all needles are rigid,
identical and sufficiently flexible, such that rotating the nee-
dle at the base will not change its position in the workspace.
Second, the motion of each needle is fully determined by its
tip, which means that the needle body follows the path of the
needle tip. Third, the feasible workspace is a stiff 3D cuboid,
the needles are 1 dimensional curve in the 3D workspace,
and all spatial obstacles are approximated using 3D spheres
with various radii to simplify computational expenses for
collision detection.
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Fig. 2. Model of the bevel-tip needle.

With the above assumptions, the steerable needle motion
planning problem is well defined and stated as follows.

Problem 1: Motion Planning of Multiple Steerable
Needles with Single Entry Region:Given an entry region
and a set of target configurations, determine a set of feasible
paths and the corresponding sequences of controls (insertion
depths and rotations for each needle) so that each target can
be reached by a needle tip inserted from the entry region
while avoiding obstacles and staying inside the workspace.
Input: Boundaries of the workspace, parameters of all nee-
dles, information of all obstacles, an entry region in the entry
surface to insert all needles, and a set of target configurations
to reach.
Output: A set of feasible entry points inside the entry region,
a set of sequences of controls, with any of which there exists
a needle from one entry point can reach one of the targets,
or a report that no path is found.
Insertion planning with deformable environment and realistic
obstacles with more complicated geometric shape will be
considered in future work.

IV. K INEMATICS OF BEVEL-TIP FLEXIBLE NEEDLE

Consider the bevel-tip needle shown in Fig. 2. Referring
to the notations in [23], attach a spatial frameP to the base
of the needle and a body frameO to the geometric center of
the needle’s bevel tip, respectively. The configuration of the
needle tip can be represented homogeneously by the 4-by-
4 transformation matrix of the object frame relative to the
spatial frame,

gPO =

[

RPO pPO

0 1

]

∈ SE(3),

whereRPO ∈ SO(3) is the rotation matrix andpPO ∈ T (3)
is the position of frameO relative to frameS.

The motion of the needle is fully determined by two
motions of the bevel tip: insertion with velocityv(t) in the
z direction and rotation with velocityω(t) about thez axis
of the body frameO [8], [14]. It has been experimentally
shown [7] that the bevel-tip needle will follow a constantly
curved path with curvatureκ = 1

r
while pushed with zero

bevel rotation velocity, i.e.ω = 0. The instantaneous velocity
of the needle tip can be represented in the body frameO as

V b
PO = [vT

w
T ]

T
= [0 0 v(t) v(t)/r 0 ω(t)]

T
. (1)



Fig. 3. The crateriform reachable region of local needle motion.

WhenV b
PO is constant, i.e.,v(t) andω(t) are constant, the

configuration of the needle tip relative to the spatial frame
after being pushed for a time intervalt is

gPO(t) = gPO(0)eV̂ b

P O
t, (2)

wheregPO(0) is the initial configuration of the needle frame
relative to the spatial frame, and

V̂ b
PO =







0 −ω(t) 0 0
ω(t) 0 −v(t)/r 0
0 v(t)/r 0 v(t)
0 0 0 0






. (3)

According to the kinematics analysis in [14], the trajectory
of the needle only depends on the ratioω/v but not on the
values of the two individual terms. Moreover, the nature
of motion planning is to find a trajectory regardless the
scaling in time, which means moving along a trajectory
with different speed does not change its shape. Therefore,
we discretize the entire insertion intoN steps withN
time segments{I1, · · · , IN} and assume that the velocity in
each single step,V b

PO(In), is constant. The final needle tip
configuration can be computed as a product of exponentials
[23], [14]

gPO(T ) = gPO(0)eV̂ b

PO
(I1)I1 · · · eV̂ b

PO
(IN )IN . (4)

Note that the bevel-tip needle can only follow curved paths
with a curvatureκ = 1/r, as shown in Fig. 2. For this reason,
reachable configurations of the needle are locally constrained
inside the volume of a crateriform region (see Fig. 3) defined
by

pz ≥

√

2r
√

p2
x + p2

y − p2
x − p2

y, (5)

where (px, py, pz) are coordinates of a point in the body
frameO.

V. M OTION PLANNING FOR MULTIPLE STEERABLE

NEEDLE USINGRRT FOREST

A. “Fireworks” needles insertion planning based on RRTs
Forest

The configuration of the needle tip is determined by
its position (x, y, z) together with its three Euler angles
(φ, θ, ψ). Since the insertion task only requires the needle
to reach a specific position in the 3 dimensional workspace,

BUILD FOREST(Sinit, Sgoal)
1. for all si

goal ∈ Sgoal

2. Ti = Tinit(s
i
goal)

3. Fadd tree(Ti)
4. while No of Iteration < Max Iteration
5. srand← RANDOM STATE()
6. F ← EXTEND FOREST(F , srand)
7. p*=SELECTPATHS(F)
8. RETURN p*

TABLE I

THE SCENARIO OFALGORITHM 1.

the configuration spaceC for motion planning is equivalent
to R

3. Following its kinematics (2), the needle’s trajectory to
reach a target atgPO(t) can be computed backwardly from
its target as

gPO(t− δt) = gPO(t)e−V̂ b

P O
δt. (6)

Given the workspace’s boundaries, ([xmin, xmax], [ymin, ymax],
and[zmin, zmax]), the obstacles information, the target config-
urationssgoal and the specified entry zoneSentry, a motion
planning algorithm based on RRTs with backchaining has
been developed to quickly explore the configuration space
from the target to find feasible soultions for insertion tasks
with single needle and single target (SNST) [16].

For “fireworks” insertion task, one can separatively ex-
ecute the algorithm for SNST for each individual target.
However, repeated sampling procedures for each needle
unnecessarily increase the computational cost. Moreover,
separated collision detection for a needle in an environment
with previous solutions of other needles also requires ex-
tensive computational cost. By extending that algorithm, we
propose a new algorithm to quickly grow a forest of RRTs
to search feasible paths for all targets simultaneously.

Algorithm 1 (Forest of RRTs with backchaining):For
all si

goal ∈ Sgoal, initialize the forestF by initializing all
treesTi rooting atsi

goal. Randomly sample a statesrand in the
collision free configuration spaceCS free. For all trees in the
forest, the reachable neighbor test is executed for all node
si ∈ Ti to find a reachable setSi

reach, which contains all
nodes reachable fromsrand. The nearest neighbor search is
executed insideSi

reach to find the nearest neighbor ofsrand,
denoted bysi

near∈ Si
reach, which has the shortest distance to

srand. The distance used in the nearest neighbor search can
be defined in different ways by defining different metrics
on the configuration space. Then we uniformly sample the
negative control space−U , and apply all sampled control
inputs tosi

near for a small time incrementδt > 0 to generate
a set of possible new statesSi

new from any Ti. Again, the
nearest neighbor ofsrand, si

new ∈ Si
new, is added to each

Ti. Such strategy is repeated until the number of iteration
reaches its predefined limit. Finally, a path selection process
is executed to find a set of “optimal” feasible paths based
on specific optimization criteria, or a failure report is output
with no feasible plan found.



RANDOM STATE()
1. p = rand(0, 1)
2. if p < p1

3. srand =UNIFORM SAMPLE(Sinit)
4. if p1 < p < p2

5. srand =UNIFORM SAMPLE(Sgoal)
6. else
7. srand =UNIFORM SAMPLE(CSfree/(Sinit ∪ Sgoal))
8. RETURNsrand

EXTEND FOREST(F , srand)
1. for all Ti ∈ F

2. EXTEND TREE(Ti, srand)
3. RETURNF

EXTEND TREE(T , srand)
1. Si

reach← REACHABLE NEIGHBORS(T , srand)
2. snear← NEAREST NEIGHBOR(Si

reach, srand)
3. (snew, unew)← NEW STATE(snear, srand,U)
4. T .add vertex(snew)
5. T .add edge(snear, snew, unew)
6. RETURNT

REACHABLE NEIGHBORS(T , srand)
1. For all si ∈ T

2. if si is reachable fromsrand

3. addsi to Sreach

4. RETURNSreach.

NEW STATE(snear, srand,U)
1. Urand← CONTROL SAMPLING(U)
2. FOR allui ∈ Urand

3. snew(i) = snear+ Fqnear(s,−ui)δt
4. Snew = ∪isnew(i)
5. snew← NEAREST NEIGHBOR(Snew, srand)
6. unew = −ui such thatsi = snew

7. RETURNsnew, unew

TABLE II

DETAILED PROCEDURE OFALGORITHM 1.

One concern of RRT-based motion planning algorithm
with backchaining is the efficient growth of the reversed
RRTs toward the entry region. In order to explore the forest
quickly toward the entry region, we apply a biased sampling
strategy inCS free, with which the statesrand is sampled with
a higher density inSgoal than elsewhere in the configuration
space. Ifsrand collides with any obstacle, it is discarded and
new states are sampled until one inCS free is found.

The control inputs are sampled uniformly in the control
space, using CONTROLSAMPLING(), within a predefined
range[vmin, vmax] × [ωmin, ωmax]. By doing so, we not only
explore the RRT toward all possible directions with same
probability, but also extend the RRT toward the sampled
states by various stepsize with same probability. The full
scenario of Algorithm 1 is shown in Table. I and table. II.

B. Paths Selection

If a target si
goal is reachable from the entry region,

Algorithm 1 will output a set of feasible paths for this
target, denoted byPi. SELECTPATHS() will select and
output the “best” plan,P ∗ = {p∗1, · · · , p

∗

n}, for the given
target setSgoal, wherep∗i is the “best” path forsi

goal. With
consideration of different optimization criteria, different path
selection strategies can be applied.

1) Plan with minimal twists:While inserting a needle
into the patient’s body, rotating the needle will always cause
damages to the tissue. Because of the discretization of
the needle’s kinematics, the more segments a feasible path
contains, the more damage it will cause on the tissue. In addi-
tion, uncertainties in needles’ motions will greatly affect the
performance and accuracy of the insertion. Since the control
of the needles is open loop, the more control inputs a feasible
path has, the more uncertainties this path will involve. Let
nk be the number of control inputs corresponding to thekth

path inPi, the p∗i for eachsi
goal can be selected using the

following minimal twists strategy,

p∗i = arg min
pk∈Pi

(nk).

2) Plan with minimal insertion region:Inserting multiple
needles to reach multiple targets may require more area
of entry region. This will increase the complexity of the
treatment as well as the trauma on the patient. As described
in its scenario, Algorithm 1 consider this issue by exploring
the connectivity between different targets so that possible
plan may be found to reach multiple targets with only
one needle. Besides that, the entry region can be further
minimized based on the output path sets,Pis. Let ei

k be
the corresponding entry point of thekth path,pk

i ∈ Pi, for
targetsi. The optimal planP ∗ can be selected by using the
following minimal entry region strategy,

P ∗ = arg min
k,l

(max
i,j

d(ei
k, e

j
l )),

where d(ei
k, e

j
l ) is the Euclidean distance betweenei

k and
ej

l . This strategy minimizes the maximal distance between
possible entry points of any two needles.

Remark 1: Because of the probabilistic characteristic of
RRTs, the output are only feasible plans found in the iteration
limits. Therefore, the proposed path selection strategiesonly
reflet the sub-optimality inside the set of feasible plans.

VI. SIMULATION AND DISCUSSION

A. Simulation setup

We implement the proposed RRT-Forest-based motion
planning algorithm for multiple steerable needles insertion
using an approximated 3D prostate environment. The real
prostate environment is very complex, which contains many
obstacles with complicated shapes, such as the urethra, the
pubic arch, the penile bulb, etc. To simplify the computa-
tional cost for obstacle collision avoidance, we use a set of
spherical obstacles with different radii to approximate the
real environment as shown in Fig. 4. The entire workspace
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Fig. 4. The simulation setup: An approximated environment for multiple
needle insertion.
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Fig. 5. A set of paths for simulation task 1: For all the 5 targets, only
one path from each path set is selected with plan selection algorithm 1 to
minimize twists of the path.

is defined as a cubiod with coordinates(−3, 3)× (−3, 3)×
(0, 10). The region of interest around the prostate is defined
as a cube of 3×3×3 located at the top of the workspace. The
possible entry region is defined as a 2×2 square in the skin
plane (X-Y plane). The assumption of spherical obstacles
and 1D needles make it easy to implement a fast collision
detection simply using Euclidean distance between the nee-
dle’s trajectories and the obstacles’ surfaces. Interference of
different needles are not considered until selecting the final
optimal insertion plan. Simulations are run on a laptop with
the AMDr TurionTM64 CPU @2.1 GHz, 4 GB memory,
and the Microsoftr Windows VistaTM operating system.

B. Simulation Results

The insertion task is to insert multiple needles from the
2×2 rectangular entry region centering at(0, 0, 0) in the skin
plane to reach totally 5 targets, which are randomly generated
in the region of interest. The range of the uniformly sampled
control inputs are defined by insertion depth in the range of
[0.1, 0.5] and rotation angle in the range of[0, 2π]. We totally
run 5 trials, all of which successfully find feasible plans
within 10000 iterations with an average computational time
of 57573.4 seconds. Figure 7 shows the feasible plans found
for all 5 targets in one trial. For each target in this trail, we
also implemented the SNST algorithm for individual needle.
Feasible paths for each target are successfully found in 10000

(a)

− 3 − 2 − 1 0 1 2 3− 3− 2− 10123
(b)

Fig. 6. A set of paths for simulation task 1: For all the 5 targets, only
one path from each path set is selected with plan selection algorithm 2 to
minimize region for insertion.

iterations with a computational time of87755 seconds. This
is because that Algorithm 1 used every random sample to
explore all 5 random trees, which is more efficient that
separately applying the SNST algorithm and significantly
reduce the computational time required by repeated sampling
process. Figure 5-(a) shows the “optimal” plan selected
using minimal twist strategy, and Figure 5-(b) shows the
corresponding entry points. Figure 6-(a) shows the “optimal”
plan selected using minimal entry region strategy, and Figure
6-(b) shows the corresponding entry points.

C. Discussion

The RRT-Forest-based algorithm efficiently explores the
collision-free configuration space and built its connectivity.
With the minimal twist strategy, the entry points for all
targets are selected in a way to minimize the path length to
the corresponding target. However, this leads to a relatively
larger entry region. With the minimal entry region strategy,
the entry region is further minimized among all possible
plans. As shown in Figure 6-(b), the “optimal” plan for this
trial can be reduced into a circular region of radius less
than 0.3. This can significantly reduce the complexity of the
treatment as well as the patient’s trauma. For example, with
the precurved-tube continuum robots recently developed by
Webster III, et. al. [24], this plan can be executed from only
one entry hole to reach all targets.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we presented an algorithm for motion
planning of multiple bevel-tip steerable needles to reach
multiple targets in 3D environments with obstacles. This
algorithm is inspired by the RRT-based motion planning
algorithm with backchaining for solving feasible entry point
planning problem for a single needle [16]. The proposed
algorithm builds an RRT forest structure and provides a
quick and more efficient exploration from all targets toward
a single entry region to find feasible plans. By minimizing
either the damage to the tissue or the final entry region, two
path selection strategies were developed to further optimize
the final “fireworks” insertion plan among all output feasible
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Fig. 7. Feasible paths found for one trial: For each of the 5 targets, a set of feasible paths is found. With any path in the path set, a steerable needle can
be inserted from the single entry region to reach the target.

plans. Finally, we implemented this algorithm in an approx-
imated prostate environment and provided simulation results
to verify its performance.

In this paper, we only considered stiff environments
with non-deformable spherical obstacles. In future work, we
will explore the motion planning for steerable needle in
deformable environments with obstacles of more complex
shapes. Moreover, we will further explore the feasibility of
reaching multiple targets with single needle in our future
work.
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